
RISC-V External Debug Support

Version 0.13-DRAFT

32cbb9bb708e5d8e6a7071f092e1184f92701383

Tim Newsome <tim@sifive.com>

Mon Mar 19 12:38:09 2018 -0700

Preface

Warning! This draft specification will change before being accepted as standard, so
implementations made to this draft specification will likely not conform to the future
standard.

Acknowledgments

I would like to thank the following people for their time, feedback, and ideas: Bruce Ableidinger,
Krste Asanovic, Allen Baum, Mark Beal, Alex Bradbury, Zhong-Ho Chen, Monte Dalrymple,
Vyacheslav Dyanchenco, Peter Egold, Richard Herveille, Po-wei Huang, Scott Johnson, Aram
Nahidipour, Rishiyur Nikhil, Gajinder Panesar, Klaus Kruse Pedersen, Antony Pavlov, Ken Pettit,
Wesley Terpstra, Megan Wachs, Stefan Wallentowitz, Ray Van De Walker, Andrew Waterman, and
Andy Wright.

i

ii RISC-V External Debug Support Version 0.13-DRAFT

Contents

Preface i

1 Introduction 1

1.1 Terminology . 1

1.1.1 Context . 1

1.2 About This Document . 2

1.2.1 Structure . 2

1.2.2 Register Definition Format . 2

1.2.2.1 Long Name (shortname, at 0x123) 2

1.3 Background . 3

1.4 Supported Features . 3

2 System Overview 5

3 Debug Module (DM) 7

3.1 Debug Module Interface (DMI) . 7

3.2 Reset Control . 8

3.3 Selecting Harts . 8

3.3.1 Selecting a Single Hart . 9

3.3.2 Selecting Multiple Harts . 9

3.4 Run Control . 9

3.5 Abstract Commands . 9

iii

iv RISC-V External Debug Support Version 0.13-DRAFT

3.5.1 Abstract Command Listing . 10

3.5.1.1 Access Register . 10

3.5.1.2 Quick Access . 11

3.6 Program Buffer . 12

3.7 Overview of States . 13

3.8 System Bus Access . 13

3.9 Quick Access . 15

3.10 Security . 15

3.11 Debug Module DMI Registers . 16

3.11.1 Debug Module Status (dmstatus, at 0x11) 17

3.11.2 Debug Module Control (dmcontrol, at 0x10) 19

3.11.3 Hart Info (hartinfo, at 0x12) . 21

3.11.4 Hart Array Window Select (hawindowsel, at 0x14) 22

3.11.5 Hart Array Window (hawindow, at 0x15) . 22

3.11.6 Abstract Control and Status (abstractcs, at 0x16) 22

3.11.7 Abstract Command (command, at 0x17) . 23

3.11.8 Abstract Command Autoexec (abstractauto, at 0x18) 24

3.11.9 Device Tree Addr 0 (devtreeaddr0, at 0x19) 24

3.11.10 Next Debug Module (nextdm, at 0x1d) . 25

3.11.11 Abstract Data 0 (data0, at 0x04) . 25

3.11.12 Program Buffer 0 (progbuf0, at 0x20) . 25

3.11.13 Authentication Data (authdata, at 0x30) . 26

3.11.14 Halt Summary 0 (haltsum0, at 0x40) . 26

3.11.15 Halt Summary 1 (haltsum1, at 0x13) . 26

3.11.16 Halt Summary 2 (haltsum2, at 0x34) . 26

3.11.17 Halt Summary 3 (haltsum3, at 0x35) . 27

3.11.18 System Bus Address 127:96 (sbaddress3, at 0x37) 27

3.11.19 System Bus Access Control and Status (sbcs, at 0x38) 28

RISC-V External Debug Support Version 0.13-DRAFT v

3.11.20 System Bus Address 31:0 (sbaddress0, at 0x39) 29

3.11.21 System Bus Address 63:32 (sbaddress1, at 0x3a) 30

3.11.22 System Bus Address 95:64 (sbaddress2, at 0x3b) 30

3.11.23 System Bus Data 31:0 (sbdata0, at 0x3c) . 31

3.11.24 System Bus Data 63:32 (sbdata1, at 0x3d) 32

3.11.25 System Bus Data 95:64 (sbdata2, at 0x3e) 32

3.11.26 System Bus Data 127:96 (sbdata3, at 0x3f) 32

4 RISC-V Debug 35

4.1 Debug Mode . 35

4.2 Load-Reserved/Store-Conditional Instructions . 36

4.3 Single Step . 36

4.4 Reset . 36

4.4.1 dret Instruction . 36

4.5 Core Debug Registers . 37

4.5.1 Debug Control and Status (dcsr, at 0x7b0) 37

4.5.2 Debug PC (dpc, at 0x7b1) . 39

4.5.3 Debug Scratch Register 0 (dscratch0, at 0x7b2) 39

4.5.4 Debug Scratch Register 1 (dscratch1, at 0x7b3) 40

4.6 Virtual Debug Registers . 40

4.6.1 Privilege Level (priv, at virtual) . 40

5 Trigger Module 43

5.1 Trigger Registers . 43

5.1.1 Trigger Select (tselect, at 0x7a0) . 44

5.1.2 Trigger Data 1 (tdata1, at 0x7a1) . 44

5.1.3 Trigger Data 2 (tdata2, at 0x7a2) . 45

5.1.4 Trigger Data 3 (tdata3, at 0x7a3) . 45

5.1.5 Match Control (mcontrol, at 0x7a1) . 45

vi RISC-V External Debug Support Version 0.13-DRAFT

5.1.6 Instruction Count (icount, at 0x7a1) . 48

6 Debug Transport Module (DTM) 51

6.1 JTAG Debug Transport Module . 51

6.1.1 JTAG Background . 51

6.1.2 JTAG DTM Registers . 52

6.1.3 IDCODE (at 0x01) . 52

6.1.4 DTM Control and Status (dtmcs, at 0x10) 53

6.1.5 Debug Module Interface Access (dmi, at 0x11) 54

6.1.6 BYPASS (at 0x1f) . 55

6.1.7 Recommended JTAG Connector . 56

A Hardware Implementations 59

A.1 Abstract Command Based . 59

A.2 Execution Based . 59

B Debugger Implementation 61

B.1 Debug Module Interface Access . 61

B.2 Main Loop . 62

B.3 Halting . 62

B.4 Running . 62

B.5 Single Step . 62

B.6 Accessing Registers . 62

B.6.1 Using Abstract Command . 62

B.6.2 Using Program Buffer . 63

B.7 Reading Memory . 63

B.7.1 Using System Bus Access . 63

B.7.2 Using Program Buffer . 64

B.8 Writing Memory . 65

RISC-V External Debug Support Version 0.13-DRAFT vii

B.8.1 Using System Bus Access . 65

B.8.2 Using Program Buffer . 65

B.9 Handling Exceptions . 66

B.10 Quick Access . 66

C Future Ideas 69

C.1 Serial Ports . 70

C.1.1 Serial Control and Status (sercs, at 0x34) 70

C.1.2 Serial TX Data (sertx, at 0x35) . 71

C.1.3 Serial RX Data (serrx, at 0x36) . 71

Index 72

D Change Log 75

viii RISC-V External Debug Support Version 0.13-DRAFT

List of Figures

2.1 RISC-V Debug System Overview . 6

3.1 Run/Halt Debug State Machine . 14

ix

x RISC-V External Debug Support Version 0.13-DRAFT

List of Tables

1.2 Register Access Abbreviations . 2

3.1 Use of Data Registers . 10

3.2 Meaning of cmdtype . 10

3.5 Abstract Register Numbers . 12

3.6 System Bus Data Bits . 13

3.7 Debug Module Debug Bus Registers . 16

4.1 Core Debug Registers . 37

4.3 Virtual address in DPC upon Debug Mode Entry . 39

4.4 Virtual Core Debug Registers . 40

4.5 Privilege Level Encoding . 40

5.1 Trigger Registers . 44

5.3 Suggested Breakpoint Timings . 46

6.1 JTAG DTM TAP Registers . 52

6.5 JTAG Connector Diagram . 56

6.6 JTAG Connector Pinout . 57

B.1 Memory Read Timeline . 65

C.1 Debug Module Debug Bus Registers . 70

xi

xii RISC-V External Debug Support Version 0.13-DRAFT

Chapter 1

Introduction

When a design progresses from simulation to hardware implementation, a user’s control and un-
derstanding of the system’s current state drops dramatically. To help bring up and debug low level
software and hardware, it is critical to have good debugging support built into the hardware. When
a robust OS is running on a core, software can handle many debugging tasks. However, in many
scenarios, hardware support is essential.

This document outlines a standard architecture for external debug support on RISC-V platforms.
This architecture allows a variety of implementations and tradeoffs, which is complementary to
the wide range of RISC-V implementations. At the same time, this specification defines common
interfaces to allow debugging tools and components to target a variety of platforms based on the
RISC-V ISA.

System designers may choose to add additional hardware debug support, but this specification
defines a standard interface for common functionality.

1.1 Terminology

A platform is a single integrated circuit consisting of one or more components. Some components
may be RISC-V cores, while others may have a different function. Typically they will all be
connected to a single system bus. A single RISC-V core contains one or more hardware threads,
called harts.

1.1.1 Context

This document is written to work with:

1. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2

2. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10

1

2 RISC-V External Debug Support Version 0.13-DRAFT

1.2 About This Document

1.2.1 Structure

This document contains two parts. The main part of the document is the specification, which is
given in the numbered sections. The second part of the document is a set of appendices. The
information in the appendix is intended to clarify and provide examples, but is not part of the
actual specification.

1.2.2 Register Definition Format

All register definitions in this document follow the format shown below. A simple graphic shows
which fields are in the register. The upper and lower bit indices are shown to the top left and top
right of each field. The total number of bits in the field are shown below it.

After the graphic follows a table which for each field lists its name, description, allowed accesses,
and reset value. The allowed accesses are listed in Table 1.2.

Names of registers and their fields are hyperlinks to their definition, and are indexed on page 72.

1.2.2.1 Long Name (shortname, at 0x123)

31 8 7 0

0 field

24 8

Field Description Access Reset

field Description of what this field is used for. R/W 15

Table 1.2: Register Access Abbreviations
R Read-only.

R/W Read/Write.

R/W0 Read/Write. Only writing 0 has an effect.

R/W1 Read/Write. Only writing 1 has an effect.

R/W1C Read/Write. For each bit in the field, writing 1 clears
that bit. Writing 0 has no effect.

W Write-only. When read this field returns 0.

W1 Write-only. Only writing 1 has an effect.

RISC-V External Debug Support Version 0.13-DRAFT 3

1.3 Background

There are several use cases for dedicated debugging hardware, both internal to a CPU core and with
an external connection. This specification addresses the use cases listed below. Implementations
can choose not to implement every feature, which means some use cases might not be supported.

• Debugging low-level software in the absence of an OS or other software.

• Debugging issues in the OS itself.

• Bootstrapping a system to test, configure, and program components before there is any
executable code path in the system.

• Accessing hardware on a system without a working CPU.

In addition, even without a hardware debugging interface, architectural support in a RISC-V
CPU can aid software debugging and performance analysis by allowing hardware triggers and
breakpoints. This specification aims to define common resources which can be used for different
cases.

When debugging software, this specification distinguishes between two forms of external debugging.
The first is halt mode debugging, where an external debugger halts some or all components of a
platform and inspects their state while they are in stasis. The debugger can read and/or modify
state, then direct the hardware to execute a single instruction, or continue to run freely.

The second is run mode debugging. In this mode a software debug agent runs on a component
(eg. triggered by a timer interrupt or breakpoint on a RISC-V core) which transfers data to or
from the debugger without halting the component, only briefly interrupting its program flow. This
functionality is essential if the component is controlling some real-time system (like a hard drive)
where long timing delays could lead to physical damage. This requires additional software support
(both on the system as well as on the debugger), and efficient communication channels between the
component and the debugger.

1.4 Supported Features

The debug interface described in this specification supports the following features:

1. RV32, RV64, and future RV128 are all supported.

2. Any hart in the platform can be independently debugged.

3. A debugger can discover almost1 everything it needs to know itself, without user configuration.

4. Each hart can be debugged from the very first instruction executed.

1Notable exceptions include information about the memory map and peripherals.

4 RISC-V External Debug Support Version 0.13-DRAFT

5. A RISC-V hart can be halted when a software breakpoint instruction is executed.

6. Hardware single-step can execute one instruction at a time.

7. Debug functionality is independent of the debug transport used.

8. The debugger does not need to know anything about the microarchitecture of the harts it is
debugging.

9. Arbitrary subsets of harts can be halted and resumed simultaneously. (Optional)

10. Arbitrary instructions can be executed on a halted hart. That means no new debug function-
ality is needed when a core has additional or custom instructions or state, as long as there
exist programs that can move that state into GPRs. (Optional)

11. Registers can be accessed without halting. (Optional)

12. A running hart can be directed to execute a short sequence of instructions, with little overhead.
(Optional)

13. A system bus master allows memory access without involving any hart. (Optional)

14. A RISC-V hart can be halted when a trigger matches the PC, read/write address/data, or
an instruction opcode. (Optional)

While both the mechanism to execute arbitrary instructions and the system bus master are optional,
at least one of them must be implemented. Otherwise there is no mechanism to access memory.

This document does not suggest a strategy or implementation for hardware test, debugging or error
detection techniqes. Scan, BIST, etc. are out of scope of this specification, but this specification
does not intend to limit their use in RISC-V systems.

The debug interface deals with physical addresses only. Address translation is outside the scope of
this specification, as are software threads.

Chapter 2

System Overview

Figure 2.1 shows the main components of External Debug Support. Blocks shown in dotted lines
are optional.

The user interacts with the Debug Host (eg. laptop), which is running a debugger (eg. gdb). The
debugger communicates with a Debug Translator (eg. OpenOCD, which may include a hardware
driver) to communicate with Debug Transport Hardware (eg. Olimex USB-JTAG adapter). The
Debug Transport Hardware connects the Debug Host to the Platform’s Debug Transport Module
(DTM). The DTM provides access to one or more Debug Modules (DMs) using the Debug Module
Interface (DMI).

Each hart in the platform is controlled by exactly one DM. Harts may be heterogeneous. There
is no further limit on the hart-DM mapping, but usually all harts in a single core are controlled
by the same DM. In most platforms there will only be one DM that controls all the harts in the
platform.

DMs provide run control to their harts in the platform. Abstract commands provide access to
GPRs. Additional registers are accessible through abstract commands or by writing programs to
the optional Program Buffer.

The Program Buffer allows the debugger to execute arbitrary instructions on a hart. This mecha-
nism can be used to access memory. An optional system bus access block allows memory accesses
without using a RISC-V hart to perform the access.

Each RISC-V hart may implement a Trigger Module. When trigger conditions are met, harts will
halt and inform the debug module that they have halted.

5

6 RISC-V External Debug Support Version 0.13-DRAFT

Figure 2.1: RISC-V Debug System Overview

Chapter 3

Debug Module (DM)

The Debug Module implements a translation interface between abstract debug operations and their
specific implementation. It might support the following operations:

1. Give the debugger necessary information about the implementation. (Required)

2. Allow any individual hart to be halted and resumed. (Required)

3. Provide status on which harts are halted. (Required)

4. Provide read and write access to a halted hart’s GPRs. (Required)

5. Provide access to a reset signal that allows debugging from the very first instruction after
reset. (Required)

6. Provide access to other hart registers. (Optional)

7. Provide a Program Buffer to force the hart to execute arbitrary instructions. (Optional)

8. Allow multiple harts to be halted, resumed, and/or reset at the same time. (Optional)

9. Allow direct System Bus Access. (Optional)

In order to implement memory access, a target must implement either the Program Buffer or
System Bus Access.

A single DM can debug up to 220 harts.

3.1 Debug Module Interface (DMI)

Debug Modules are slaves to a bus called the Debug Module Interface (DMI). The master of the
bus is the Debug Transport Module(s). The Debug Module Interface can be a trivial bus with
one master and one slave, or use a more full-featured bus like TileLink or the AMBA Advanced
Peripheral Bus. The details are left to the system designer.

7

8 RISC-V External Debug Support Version 0.13-DRAFT

The DMI uses between 7 and 32 address bits. It supports read and write operations. The bottom
of the address space is used for the first (and usually only) DM. Extra space can be used for custom
debug devices, other cores, additional DMs, etc. If there are additional DMs on this DMI, the base
address of the next DM in the DMI address space is given in nextdm.

The Debug Module is controlled via register accesses to its DMI address space.

3.2 Reset Control

The Debug Module controls a global reset signal, ndmreset (non-debug module reset), which can
reset, or hold in reset, every component in the platform, except for the Debug Module and Debug
Transport Modules. Exactly what is affected by this reset is implementation dependent, as long
as it is possible to debug programs from the first instruction executed. The Debug Module’s own
state and registers should only be reset at power-up and while dmactive in dmcontrol is 0. The
halt state of harts should be maintained across system reset provided that dmactive is 1, although
trigger CSRs may be cleared.

Due to clock and power domain crossing issues, it may not be possible to perform arbitrary DMI
accesses across system reset. While ndmreset or any external reset is asserted, the only supported
DM operation is accessing dmcontrol. The behavior of other accesses is undefined.

There is no requirement on the duration of the assertion of ndmreset. The implementation must
ensure that a write of ndmreset to 1 followed by a write of ndmreset to 0 triggers system reset. The
system may take an arbitrarily long time to come out of reset, as reported by allunavail, anyunavail,
or other implementation specific indicators.

When harts have been reset, they must set a sticky havereset state bit. The conceptual havereset
state bits can be read for selected harts in anyhavereset and allhavereset in dmstatus. These bits
must be set regardless of the cause of the reset. The havereset bits for the selected harts can be
cleared by writing 1 to ackhavereset in dmcontrol. The havereset bits may or may not be cleared
when dmactive is low.

3.3 Selecting Harts

Up to 1024 harts can be connected to a single DM. The debugger selects a hart, and then subsequent
halt, resume, reset, and debugging commands are specific to that hart.

To enumerate all the harts, a debugger must first determine HARTSELLEN by writing all ones to
hartsel (assuming the maximum size) and reading back the value to see which bits were actually
set. Then it selects each hart starting from 0 until either anynonexistent in dmstatus is 1, or the
highest index (depending on HARTSELLEN) is reached.

The debugger can discover the mapping between hart indices and mhartid by using the interface
to read mhartid, or by reading the system’s Device Tree.

RISC-V External Debug Support Version 0.13-DRAFT 9

3.3.1 Selecting a Single Hart

All debug modules must support selecting a single hart. The debugger can select a hart by writing
its index to hartsel. Hart indexes start at 0 and are contiguous until the final index.

3.3.2 Selecting Multiple Harts

Debug Modules may optionally implement a Hart Array Mask register to allow selecting multiple
harts at once. The debugger can set bits in the hart array mask register using hawindowsel and
hawindow, then apply actions to all selected harts by setting hasel. If this feature is supported,
multiple harts can be halted, resumed, and reset simultaneously.

Only the actions initiated by dmcontrol can apply to multiple harts at once, Abstract Commands
apply only to the hart selected by hartsel.

3.4 Run Control

For every hart, the Debug Module contains 3 conceptual bits of state: halt request, resume request,
and hart reset. (The hart reset bit is optional.) These bits all reset to 0. A debugger can write
them for the currently selected harts through haltreq, resumereq, and hartreset in dmcontrol. In
addition the DM receives halted, running, and resume ack signals from each hart.

When a running hart receives a halt request, it responds by halting and asserting its halted signal.
The halted signals of all selected harts are reflected in the allhalted and anyhalted bits. haltreq is
ignored by halted harts.

When a halted hart receives a resume request, it responds by resuming, clearing its halted signal,
and asserting its running signal and resume ack signals. The resume ack signal is lowered when the
resume request is deasserted. These status signals of all selected harts are reflected in allresumeack,
anyresumeack, allrunning, and anyrunning. resumereq is ignored by running harts.

When halt or resume is requested, a hart must respond in less than one second, unless it is unavail-
able. (How this is implemented is not further specified. A few clock cycles will be a more typical
latency).

3.5 Abstract Commands

The DM supports a set of abstract commands, most of which are optional. Depending on the
implementation, the debugger may be able to perform some abstract commands even when the
selected hart is not halted. Debuggers can only determine which abstract commands are supported
by a given hart in a given state by attempting them and then looking at cmderr in abstractcs to
see if they were successful.

Debuggers execute abstract commands by writing them to command. Debuggers can determine

10 RISC-V External Debug Support Version 0.13-DRAFT

whether an abstract command is complete by reading busy in abstractcs. If the command takes
arguments, the debugger must write them to the data registers before writing to command. If a
command returns results, the Debug Module must ensure they are placed in the data registers
before busy is cleared. Which data registers are used for the arguments is described in Table 3.1.
In all cases the least-significant word is placed in the lowest-numbered data register. The argument
width depends on the command being executed, and is XLEN where not explicitly specified.

Table 3.1: Use of Data Registers
Argument Width arg0/return value arg1 arg2

32 data0 data1 data2

64 data0, data1 data2, data3 data4, data5

128 data0–data3 data4–data7 data8–data11

3.5.1 Abstract Command Listing

This section describes each of the different abstract commands and how their fields should be
interpreted when they are written to command.

Each abstract command is a 32-bit value. The top 8 bits contain cmdtype which determines the
kind of command. Table 3.2 lists all commands.

Table 3.2: Meaning of cmdtype
cmdtype Command Page

0 Access Register Command 10

1 Quick Access 11

3.5.1.1 Access Register

This command gives the debugger access to CPU registers and program buffer. It performs the
following sequence of operations:

1. Copy data from the register specified by regno into the arg0 region of data, if write is clear
and transfer is set.

2. Copy data from the arg0 region of data into the register specified by regno, if write is set and
transfer is set.

3. Execute the Program Buffer, if postexec is set.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An
implementation may detect an upcoming failure early, and fail the overall command before it
reaches the step that would cause failure.

Debug Modules must implement this command and must support read and write access to all GPRs
when the selected hart is halted. Debug Modules may optionally support accessing other registers,

RISC-V External Debug Support Version 0.13-DRAFT 11

or accessing registers when the hart is running. If this command is supported for a register while
the hart is running, it must also be supported for a register while the hart is halted. Each individual
register (aside from GPRs) may be supported differently across read, write, and halt status.

The encoding of size was chosen to match sbaccess in sbcs.

31 24 23 22 20 19

cmdtype 0 size 0

8 1 3 1

18 17 16 15 0

postexec transfer write regno

1 1 1 16

Field Description

cmdtype This is 0 to indicate Access Register Command.

size 2: Access the lowest 32 bits of the register.
3: Access the lowest 64 bits of the register.
4: Access the lowest 128 bits of the register.
If size specifies a size larger than the register’s
actual size, then the access must fail. If a register
is accessible, then reads of size less than or equal
to the register’s actual size must be supported.
This field controls the Argument Width as refer-
enced in Table 3.1.

postexec When 1, execute the program in the Program
Buffer exactly once after performing the transfer,
if any.

transfer 0: Don’t do the operation specified by write.
1: Do the operation specified by write.
This bit can be used to just execute the Pro-
gram Buffer without having to worry about plac-
ing valid values into size or regno.

write When transfer is set: 0: Copy data from the spec-
ified register into arg0 portion of data.
1: Copy data from arg0 portion of data into the
specified register.

regno Number of the register to access, as described in
Table 3.5. dpc may be used as an alias for PC if
this command is supported on a non-halted hart.

3.5.1.2 Quick Access

Perform the following sequence of operations:

1. If the hart is halted, the command sets cmderr to halt/resume and does not continue.

12 RISC-V External Debug Support Version 0.13-DRAFT

2. Halt the hart. If the hart halts for some other reason (e.g. breakpoint), the command sets
cmderr to halt/resume and does not continue.

3. Execute the Program Buffer. If an exception occurs, cmderr is set to exception and the
program buffer execution ends, but the quick access command continues.

4. Resume the hart.

Implementing this command is optional.

31 24 23 0

cmdtype 0

8 24

Field Description

cmdtype This is 1 to indicate Quick Access command.

Table 3.5: Abstract Register Numbers
0x0000 – 0x0fff CSRs. The “PC” can be accessed here through dpc.

0x1000 – 0x101f GPRs

0x1020 – 0x103f Floating point registers

0xc000 – 0xffff Reserved for non-standard extensions and internal use.

3.6 Program Buffer

To support executing arbitrary instructions on a halted hart, a Debug Module can include a Pro-
gram Buffer that a debugger can write small programs to. Systems that support all necessary
functionality using abstract commands only may choose to omit the Program Buffer.

A debugger can write a small program to the Program Buffer, and then execute it exactly once
with the Access Register Abstract Command, setting the postexec bit in command. The debugger
can write whatever program it likes (including jumps out of the Program Buffer), but the program
must end with ebreak or c.ebreak. To save hardware, an implementation may support an implied
ebreak that is executed when a hart runs off the end of the Program Buffer. This is indicated in
impebreak. With this feature, a Program Buffer of just 2 32-bit words can offer efficient debugging.

If progbufsize is 1, the Program Buffer may only hold a single instruction, and impebreak must be
1. This instruction can be a 32-bit instruction, or a compressed instruction in the lower 16 bits
accompanied by a compressed nop in the upper 16 bits.

If the debugger executes a program that does not terminate with an ebreak instruction, the hart
will remain in Debug Mode until it is reset.

RISC-V External Debug Support Version 0.13-DRAFT 13

While these programs are executed, the hart does not leave Debug Mode (see Section 4.1). If
an exception is encountered during execution of the Program Buffer, no more instructions are
executed, the hart remains in Debug Mode, and cmderr is set to 3 (exception error). If the
debugger executes a program that doesn’t terminate, then it loses control of the hart.

Executing the Program Buffer may clobber dpc. If that is the case, it must be possible to read/write
dpc using an abstract command with postexec not set. The debugger must attempt to save dpc

between halting and executing a Program Buffer, and then restore dpc before leaving Debug Mode.

Allowing Program Buffer execution to clobber dpc allows for direct implementations that don’t
have a separate PC register, and do need to use the PC when executing the Program Buffer.

The Program Buffer may be implemented as RAM which is accessible to the hart as RAM memory.
A debugger can determine if this is the case by executing small programs that attempt to write and
read back relative to pc while executing from the Program Buffer. If so, the debugger has more
flexibility in what it can do with the program buffer.

3.7 Overview of States

Figure 3.1 shows a conceptual view of the states passed through by a hart during run/halt debugging
as influenced by the different fields of dmcontrol, abstractcs, abstractauto, and command.

3.8 System Bus Access

When a Program Buffer is present, a debugger can access the system bus by having a RISC-V
hart perform the accesses it requires. A Debug Module may also include a System Bus Access
block to provide memory access without involving a hart, regardless of whether Program Buffer is
implemented. The System Bus Access block uses physical addresses.

The System Bus Access block may support 8-, 16-, 32-, 64-, and 128-bit accesses. Table 3.6 shows
which bits in sbdata are used for each access size.

Table 3.6: System Bus Data Bits
Access Size Data Bits

8 sbdata0 bits 7:0

16 sbdata0 bits 15:0

32 sbdata0

64 sbdata1, sbdata0

128 sbdata3, sbdata2, sbdata1, sbdata0

Depending on the microarchitecture, data accessed through System Bus Access may not always
be coherent with that observed by each hart. It is up to the debugger to enforce coherency if the
implementation does not. This specification does not define a standard way to do this, as it is
implementation/platform specific. Possibilities may include using the System Bus Interface and/or
Program Buffer to write to special memory-mapped locations, or executing special instructions via
the Program Buffer.

14 RISC-V External Debug Support Version 0.13-DRAFT

Figure 3.1: Run/Halt Debug State Machine. As only a small amount of state is visibile to the
debugger, the states and transitions are conceptual.

RISC-V External Debug Support Version 0.13-DRAFT 15

Implementing a System Bus Access block has several benefits even when a Debug Module also
implements a Program Buffer. First, it is possible to access memory in a running system with
minimal impact. Second, it may improve performance when accessing memory. Third, it may
provide access to devices that a hart does not have access to.

3.9 Quick Access

Depending on the task it is performing, some harts can only be halted very briefly. There are
several mechanisms that allow accessing resources in such a running system with a minimal impact
on the running hart.

First, an implementation may allow some abstract commands to execute without halting the hart.

Second, the Quick Access abstract command can be used to halt a hart, quickly execute the contents
of the Program Buffer, and let the hart run again. Combined with instructions that allow Program
Buffer code to access the data registers, as described in 3.11.3, this can be used to quickly perform
a memory or register access. For some systems this will be too intrusive, but many systems that
can’t be halted can bear an occasional hiccup of a hundred or less cycles.

Third, if the System Bus Access block is implemented, it can be used while a hart is running to
access system memory.

3.10 Security

To protect intellectual property it may be desirable to lock access to the Debug Module. To allow
access during a manufacturing process and not afterwards, a reasonable solution could be to add a
fuse bit to the Debug Module that can be used to be permanently disable it. Since this is technology
specific, it is not further addressed in this spec.

Another option is to allow the DM to be unlocked only by users who have an access key. Between
authenticated, authbusy, and authdata arbitrarily complex authentication mechanism can be sup-
ported. When authenticated is clear, the DM must not interact with the rest of the platform, nor
expose details about the harts connected to the DM. All DM registers should read 0, while writes
should be ignored, with the following mandatory exceptions:

1. authenticated in dmstatus is readable.

2. authbusy in dmstatus is readable.

3. version in dmstatus is readable.

4. dmactive in dmcontrol is readable and writable.

5. authdata is readable and writable.

16 RISC-V External Debug Support Version 0.13-DRAFT

3.11 Debug Module DMI Registers

Each DM has a base address (which is 0 for the first DM). The register addresses described in this
section are offsets from this base address.

When read, unimplemented Debug Module DMI Registers return 0. Writing them has no effect.

For each register it is possible to determine that it is implemented by reading it and getting a
non-zero value (eg. sbcs), or by checking bits in another register (eg. progbufsize).

Table 3.7: Debug Module Debug Bus Registers
Address Name Page

0x04 Abstract Data 0 25
0x0f Abstract Data 11
0x10 Debug Module Control 19
0x11 Debug Module Status 17
0x12 Hart Info 21
0x13 Halt Summary 1 26
0x14 Hart Array Window Select 22
0x15 Hart Array Window 22
0x16 Abstract Control and Status 22
0x17 Abstract Command 23
0x18 Abstract Command Autoexec 24
0x19 Device Tree Addr 0 24
0x1a Device Tree Addr 1
0x1b Device Tree Addr 2
0x1c Device Tree Addr 3
0x1d Next Debug Module 25
0x20 Program Buffer 0 25
0x2f Program Buffer 15
0x30 Authentication Data 26
0x34 Halt Summary 2 26
0x35 Halt Summary 3 27
0x37 System Bus Address 127:96 27
0x38 System Bus Access Control and Status 28
0x39 System Bus Address 31:0 29
0x3a System Bus Address 63:32 30
0x3b System Bus Address 95:64 30
0x3c System Bus Data 31:0 31
0x3d System Bus Data 63:32 32
0x3e System Bus Data 95:64 32
0x3f System Bus Data 127:96 32
0x40 Halt Summary 0 26

RISC-V External Debug Support Version 0.13-DRAFT 17

3.11.1 Debug Module Status (dmstatus, at 0x11)

The address of this register will not change in the future, because it contains version. It has changed
from version 0.11 of this spec.

This register reports status for the overall debug module as well as the currently selected harts, as
defined in hasel.

Harts are nonexistent if they will never be part of this system, no matter how long a user waits.
Eg. in a simple single-hart system only one hart exists, and all others are nonexistent. Debuggers
may assume that a system has no harts with indexes higher than the first nonexistent one.

Harts are unavailable if they might exist/become available at a later time, or if there are other harts
with higher indexes than this one. Eg. in a multi-hart system some might temporarily be powered
down, or a system might support hot-swapping harts. Systems with very large number of harts
may permanently disable some during manufacturing, leaving holes in the otherwise continuous
hart index space. In order to let the debugger discover all harts, they must show up as unavailable
even if there is no chance of them ever becoming available.

This entire register is read-only.

31 23 22 21 20 19 18

0 impebreak 0 allhavereset anyhavereset

9 1 2 1 1

17 16 15 14 13

allresumeack anyresumeack allnonexistent anynonexistent allunavail

1 1 1 1 1

12 11 10 9 8

anyunavail allrunning anyrunning allhalted anyhalted

1 1 1 1 1

7 6 5 4 3 0

authenticated authbusy 0 devtreevalid version

1 1 1 1 4

Field Description Access Reset

impebreak If 1, then there is an implicit ebreak instruction
at the non-existent word immediately after the
Program Buffer. This saves the debugger from
having to write the ebreak itself, and allows the
Program Buffer to be one word smaller.
This must be 1 when progbufsize is 1.

R Preset

allhavereset This field is 1 when all currently selected harts
have been reset but the reset has not been ac-
knowledged.

R -

anyhavereset This field is 1 when any currently selected hart
has been reset but the reset has not been acknowl-
edged.

R -

Continued on next page

18 RISC-V External Debug Support Version 0.13-DRAFT

Field Description Access Reset

allresumeack This field is 1 when all currently selected harts
have acknowledged the previous resume request.

R -

anyresumeack This field is 1 when any currently selected hart
has acknowledged the previous resume request.

R -

allnonexistent This field is 1 when all currently selected harts do
not exist in this system.

R -

anynonexistent This field is 1 when any currently selected hart
does not exist in this system.

R -

allunavail This field is 1 when all currently selected harts
are unavailable.

R -

anyunavail This field is 1 when any currently selected hart is
unavailable.

R -

allrunning This field is 1 when all currently selected harts
are running.

R -

anyrunning This field is 1 when any currently selected hart is
running.

R -

allhalted This field is 1 when all currently selected harts
are halted.

R -

anyhalted This field is 1 when any currently selected hart is
halted.

R -

authenticated 0 when authentication is required before using the
DM. 1 when the authentication check has passed.
On components that don’t implement authentica-
tion, this bit must be preset as 1.

R Preset

authbusy 0: The authentication module is ready to process
the next read/write to authdata.
1: The authentication module is busy. Accessing
authdata results in unspecified behavior.
authbusy only becomes set in immediate response
to an access to authdata.

R 0

devtreevalid 0: devtreeaddr0–devtreeaddr3 hold informa-
tion which is not relevant to the Device Tree.
1: devtreeaddr0–devtreeaddr3 registers hold
the address of the Device Tree.

R Preset

version 0: There is no Debug Module present.
1: There is a Debug Module and it conforms to
version 0.11 of this specification.
2: There is a Debug Module and it conforms to
version 0.13 of this specification.
15: There is a Debug Module but it does not con-
form to any available version of this spec.

R 2

RISC-V External Debug Support Version 0.13-DRAFT 19

3.11.2 Debug Module Control (dmcontrol, at 0x10)

This register controls the overall debug module as well as the currently selected harts, as defined
in hasel.

Throughout this document we refer to hartsel, which is hartselhi combined with hartsello. While the
spec allows for 20 hartsel bits, an implementation may choose to implement fewer than that. The
actual width of hartsel is called HARTSELLEN. It must be at least 0 and at most 20. A debugger
should discover HARTSELLEN by writing all ones to hartsel (assuming the maximum size) and reading
back the value to see which bits were actually set.

31 30 29 28 27 26

haltreq resumereq hartreset ackhavereset 0 hasel

1 1 1 1 1 1

25 16 15 6 5 2 1 0

hartsello hartselhi 0 ndmreset dmactive

10 10 4 1 1

Field Description Access Reset

haltreq Writes the halt request bit for all currently se-
lected harts. When set to 1, each selected hart
will halt if it is not currently halted.
Writing 1 or 0 has no effect on a hart which is
already halted, but the bit must be cleared to 0
before the hart is resumed.
Writes apply to the new value of hartsel and hasel.

W -

resumereq Writes the resume request bit for all currently se-
lected harts. When set to 1, each selected hart
will resume if it is currently halted.
The resume request bit is ignored while the halt
request bit is set.
Writes apply to the new value of hartsel and hasel.

W -

hartreset This optional field writes the reset bit for all the
currently selected harts. To perform a reset the
debugger writes 1, and then writes 0 to deassert
the reset signal.
If this feature is not implemented, the bit always
stays 0, so after writing 1 the debugger can read
the register back to see if the feature is supported.
Writes apply to the new value of hartsel and hasel.

R/W 0

ackhavereset Writing 1 to this bit clears the havereset bits for
any selected harts.
Writes apply to the new value of hartsel and hasel.

W -

Continued on next page

20 RISC-V External Debug Support Version 0.13-DRAFT

Field Description Access Reset

hasel Selects the definition of currently selected harts.
0: There is a single currently selected hart, that
selected by hartsel.
1: There may be multiple currently selected harts
– that selected by hartsel, plus those selected by
the hart array mask register.
An implementation which does not implement the
hart array mask register should tie this field to 0.
A debugger which wishes to use the hart array
mask register feature should set this bit and read
back to see if the functionality is supported.

R/W 0

hartsello The low 10 bits of hartsel: the DM-specific index
of the hart to select. This hart is always part of
the currently selected harts.

R/W 0

hartselhi The high 10 bits of hartsel: the DM-specific index
of the hart to select. This hart is always part of
the currently selected harts.

R/W 0

ndmreset This bit controls the reset signal from the DM to
the rest of the system. The signal should reset
every part of the system, including every hart,
except for the DM and any logic required to access
the DM. To perform a system reset the debugger
writes 1, and then writes 0 to deassert the reset.

R/W 0

dmactive This bit serves as a reset signal for the Debug
Module itself.
0: The module’s state, including authentication
mechanism, takes its reset values (the dmactive bit
is the only bit which can be written to something
other than its reset value).
1: The module functions normally.
No other mechanism should exist that may result
in resetting the Debug Module after power up,
including the platform’s system reset or Debug
Transport reset signals.
A debugger may pulse this bit low to get the de-
bug module into a known state.
Implementations may use this bit to aid debug-
ging, for example by preventing the Debug Mod-
ule from being power gated while debugging is
active.

R/W 0

RISC-V External Debug Support Version 0.13-DRAFT 21

3.11.3 Hart Info (hartinfo, at 0x12)

This register gives information about the hart currently selected by hartsel.

This register is optional. If it is not present it should read all-zero.

If this register is included, the debugger can do more with the Program Buffer by writing programs
which explicitly access the data and/or dscratch registers.

This entire register is read-only.

31 24 23 20 19 17 16 15 12 11 0

0 nscratch 0 dataaccess datasize dataaddr

8 4 3 1 4 12

Field Description Access Reset

nscratch Number of dscratch registers available for the
debugger to use during program buffer execution,
starting from dscratch0. The debugger can make
no assumptions about the contents of these regis-
ters between commands.

R Preset

dataaccess 0: The data registers are shadowed in the hart by
CSR registers. Each CSR register is XLEN bits
in size, and corresponds to a single argument, per
Table 3.1.
1: The data registers are shadowed in the hart’s
memory map. Each register takes up 4 bytes in
the memory map.

R Preset

datasize If dataaccess is 0: Number of CSR registers dedi-
cated to shadowing the data registers.
If dataaccess is 1: Number of 32-bit words in the
memory map dedicated to shadowing the data

registers.
Since there are at most 12 data registers, the
value in this register must be 12 or smaller.

R Preset

dataaddr If dataaccess is 0: The number of the first CSR
dedicated to shadowing the data registers.
If dataaccess is 1: Signed address of RAM where
the data registers are shadowed, to be used to
access relative to zero.

R Preset

22 RISC-V External Debug Support Version 0.13-DRAFT

3.11.4 Hart Array Window Select (hawindowsel, at 0x14)

This register selects which of the 32-bit portion of the hart array mask register is accessible in
hawindow.

The hart array mask register provides a mask of all harts controlled by the debug module. A hart
is part of the currently selected harts if the corresponding bit is set in the hart array mask register
and hasel in dmcontrol is 1, or if the hart is selected by hartsel.

31 15 14 0

0 hawindowsel

17 15

3.11.5 Hart Array Window (hawindow, at 0x15)

This register provides R/W access to a 32-bit portion of the hart array mask register. The position
of the window is determined by hawindowsel. I.e. bit 0 refers to hart hawindowsel ∗ 32, while bit
31 refers to hart hawindowsel ∗ 32 + 31.

31 0

maskdata

32

3.11.6 Abstract Control and Status (abstractcs, at 0x16)

31 29 28 24 23 13 12 11 10 8 7 4 3 0

0 progbufsize 0 busy 0 cmderr 0 datacount

3 5 11 1 1 3 4 4

Field Description Access Reset

progbufsize Size of the Program Buffer, in 32-bit words. Valid
sizes are 0 - 16.

R Preset

busy 1: An abstract command is currently being exe-
cuted.
This bit is set as soon as command is written, and
is not cleared until that command has completed.

R 0

Continued on next page

RISC-V External Debug Support Version 0.13-DRAFT 23

Field Description Access Reset

cmderr Gets set if an abstract command fails. The bits in
this field remain set until they are cleared by writ-
ing 1 to them. No abstract command is started
until the value is reset to 0.
0 (none): No error.
1 (busy): An abstract command was executing
while command, abstractcs, abstractauto was
written, or when one of the data or progbuf reg-
isters was read or written.
2 (not supported): The requested command is not
supported, regardless of whether the hart is run-
ning or not.
3 (exception): An exception occurred while ex-
ecuting the command (eg. while executing the
Program Buffer).
4 (halt/resume): The abstract command couldn’t
execute because the hart wasn’t in the required
state (running/halted).
7 (other): The command failed for another rea-
son.

R/W1C 0

datacount Number of data registers that are implemented
as part of the abstract command interface. Valid
sizes are 0 - 12.

R Preset

3.11.7 Abstract Command (command, at 0x17)

Writes to this register cause the corresponding abstract command to be executed.

Writing while an abstract command is executing causes cmderr to be set.

If cmderr is non-zero, writes to this register are ignored.

cmderr inhibits starting a new command to accommodate debuggers that, for performance rea-
sons, send several commands to be executed in a row without checking cmderr in between. They
can safely do so and check cmderr at the end without worrying that one command failed but then
a later command (which might have depended on the previous one succeeding) passed.

31 24 23 0

cmdtype control

8 24

24 RISC-V External Debug Support Version 0.13-DRAFT

Field Description Access Reset

cmdtype The type determines the overall functionality of
this abstract command.

W 0

control This field is interpreted in a command-specific
manner, described for each abstract command.

W 0

3.11.8 Abstract Command Autoexec (abstractauto, at 0x18)

This register is optional. Including it allows more efficient burst accesses. Debugger can attempt
to set bits and read them back to determine if the functionality is supported.

31 16 15 12 11 0

autoexecprogbuf 0 autoexecdata

16 4 12

Field Description Access Reset

autoexecprogbuf When a bit in this field is 1, read or write ac-
cesses to the corresponding progbuf word cause
the command in command to be executed again.

R/W 0

autoexecdata When a bit in this field is 1, read or write ac-
cesses to the corresponding data word cause the
command in command to be executed again.

R/W 0

3.11.9 Device Tree Addr 0 (devtreeaddr0, at 0x19)

When devtreevalid is set, reading this register returns bits 31:0 of the Device Tree address.
Reading the other devtreeaddr registers returns the upper bits of the address.

When system bus mastering is implemented, this must be an address that can be used with the
System Bus Access module. Otherwise, this must be an address that can be used to access the
Device Tree from the hart with ID 0.

If devtreevalid is 0, then the devtreeaddr registers hold identifier information which is not
further specified in this document.

The Device Tree itself is described in the RISC-V Privileged Specification.

This entire register is read-only.

RISC-V External Debug Support Version 0.13-DRAFT 25

31 0

addr

32

3.11.10 Next Debug Module (nextdm, at 0x1d)

If there is more than one DM accessible on this DMI, this register contains the base address of the
next one in the chain, or 0 if this is the last one in the chain.

This entire register is read-only.

31 0

addr

32

3.11.11 Abstract Data 0 (data0, at 0x04)

data0 through data11 are basic read/write registers that may be read or changed by abstract
commands. datacount indicates how many of them are implemented, starting at sbdata0, counting
up. Table 3.1 shows how abstract commands use these registers.

Accessing these registers while an abstract command is executing causes cmderr to be set.

Attempts to write them while busy is set does not change their value.

The values in these registers may not be preserved after an abstract command is executed. The
only guarantees on their contents are the ones offered by the command in question. If the command
fails, no assumptions can be made about the contents of these registers.

31 0

data

32

3.11.12 Program Buffer 0 (progbuf0, at 0x20)

progbuf0 through progbuf15 provide read/write access to the optional program buffer. progbufsize
indicates how many of them are implemented starting at progbuf0, counting up.

Accessing these registers while an abstract command is executing causes cmderr to be set.

Attempts to write them while busy is set does not change their value.

31 0

data

32

26 RISC-V External Debug Support Version 0.13-DRAFT

3.11.13 Authentication Data (authdata, at 0x30)

This register serves as a 32-bit serial port to the authentication module.

When authbusy is clear, the debugger can communicate with the authentication module by reading
or writing this register. There is no separate mechanism to signal overflow/underflow.

31 0

data

32

3.11.14 Halt Summary 0 (haltsum0, at 0x40)

Each bit in this read-only register indicates whether one specific hart is halted or not. Unavail-
able/nonexistent harts are not considered to be halted.

The LSB reflects the halt status of hart {hartsel[19:5],5’h0}, and the MSB reflects halt status of
hart {hartsel[19:5],5’h1f}.

This entire register is read-only.

31 0

haltsum0

32

3.11.15 Halt Summary 1 (haltsum1, at 0x13)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register may not be present in systems with fewer than 33 harts.

The LSB reflects the halt status of harts {hartsel[19:10],10’h0} through {hartsel[19:10],10’h1f}. The
MSB reflects the halt status of harts {hartsel[19:10],10’h3e0} through {hartsel[19:10],10’h3ff}.

This entire register is read-only.

31 0

haltsum1

32

3.11.16 Halt Summary 2 (haltsum2, at 0x34)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

RISC-V External Debug Support Version 0.13-DRAFT 27

This register may not be present in systems with fewer than 1025 harts.

The LSB reflects the halt status of harts {hartsel[19:15],15’h0} through {hartsel[19:15],15’h3ff}. The
MSB reflects the halt status of harts {hartsel[19:15],15’h7c00} through {hartsel[19:15],15’h7fff}.

This entire register is read-only.

31 0

haltsum2

32

3.11.17 Halt Summary 3 (haltsum3, at 0x35)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register may not be present in systems with fewer than 32769 harts.

The LSB reflects the halt status of harts 20’h0 through 20’h7fff. The MSB reflects the halt status
of harts 20’hf8000 through 20’hfffff.

This entire register is read-only.

31 0

haltsum3

32

3.11.18 System Bus Address 127:96 (sbaddress3, at 0x37)

If sbasize is less than 97, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

31 0

address

32

Field Description Access Reset

address Accesses bits 127:96 of the physical address in
sbaddress (if the system address bus is that
wide).

R/W 0

28 RISC-V External Debug Support Version 0.13-DRAFT

3.11.19 System Bus Access Control and Status (sbcs, at 0x38)

31 29 28 23 22 21 20

sbversion 0 sbbusyerror sbbusy sbreadonaddr

3 6 1 1 1

19 17 16 15 14 12 11 5

sbaccess sbautoincrement sbreadondata sberror sbasize

3 1 1 3 7

4 3 2 1 0

sbaccess128 sbaccess64 sbaccess32 sbaccess16 sbaccess8

1 1 1 1 1

Field Description Access Reset

sbversion 0: The System Bus interface conforms to mainline
drafts of this spec older than 1 January, 2018.
1: The System Bus interface conforms to this ver-
sion of the spec.
Other values are reserved for future versions.

R 1

sbbusyerror Set when the debugger attempts to read data
while a read is in progress, or when the debug-
ger initiates a new access while one is already in
progress (while sbbusy is set). It remains set until
it’s explicitly cleared by the debugger.
While this field is non-zero, no more system bus
accesses can be initiated by the debug module.

R/W1C 0

sbbusy When 1, indicates the system bus master is busy.
(Whether the system bus itself is busy is related,
but not the same thing.) This bit goes high im-
mediately when a read or write is requested for
any reason, and does not go low until the access
is fully completed.
To avoid race conditions, debuggers must not try
to clear sberror until they read sbbusy as 0.

R 0

sbreadonaddr When 1, every write to sbaddress0 automatically
triggers a system bus read at the new address.

R/W 0

sbaccess Select the access size to use for system bus ac-
cesses.
0: 8-bit
1: 16-bit
2: 32-bit
3: 64-bit
4: 128-bit
If sbaccess has an unsupported value when the
DM starts a bus access, the access is not per-
formed and sberror is set to 3.

R/W 2

Continued on next page

RISC-V External Debug Support Version 0.13-DRAFT 29

Field Description Access Reset

sbautoincrement When 1, sbaddress is incremented by the access
size (in bytes) selected in sbaccess after every sys-
tem bus access.

R/W 0

sbreadondata When 1, every read from sbdata0 automatically
triggers a system bus read at the (possibly auto-
incremented) address.

R/W 0

sberror When the debug module’s system bus master
causes a bus error, this field gets set. The bits
in this field remain set until they are cleared by
writing 1 to them. While this field is non-zero, no
more system bus accesses can be initiated by the
debug module.
0: There was no bus error.
1: There was a timeout.
2: A bad address was accessed.
3: There was some other error (eg. alignment).

R/W1C 0

sbasize Width of system bus addresses in bits. (0 indi-
cates there is no bus access support.)

R Preset

sbaccess128 1 when 128-bit system bus accesses are supported. R Preset

sbaccess64 1 when 64-bit system bus accesses are supported. R Preset

sbaccess32 1 when 32-bit system bus accesses are supported. R Preset

sbaccess16 1 when 16-bit system bus accesses are supported. R Preset

sbaccess8 1 when 8-bit system bus accesses are supported. R Preset

3.11.20 System Bus Address 31:0 (sbaddress0, at 0x39)

If sbasize is 0, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

If sberror is 0, sbbusyerror is 0, and sbreadonaddr is set then writes to this register start the following:

1. Set sbbusy.

2. Perform a bus read from the new value of sbaddress.

3. If the read succeeded and sbautoincrement is set, increment sbaddress.

4. Clear sbbusy.

31 0

address

32

30 RISC-V External Debug Support Version 0.13-DRAFT

Field Description Access Reset

address Accesses bits 31:0 of the physical address in
sbaddress.

R/W 0

3.11.21 System Bus Address 63:32 (sbaddress1, at 0x3a)

If sbasize is less than 33, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

31 0

address

32

Field Description Access Reset

address Accesses bits 63:32 of the physical address in
sbaddress (if the system address bus is that
wide).

R/W 0

3.11.22 System Bus Address 95:64 (sbaddress2, at 0x3b)

If sbasize is less than 65, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

31 0

address

32

Field Description Access Reset

address Accesses bits 95:64 of the physical address in
sbaddress (if the system address bus is that
wide).

R/W 0

RISC-V External Debug Support Version 0.13-DRAFT 31

3.11.23 System Bus Data 31:0 (sbdata0, at 0x3c)

If all of the sbaccess bits in sbcs are 0, then this register is not present.

Any successful system bus read updates the data in this register.

If sberror or sbbusyerror both aren’t 0 then accesses do nothing.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

Writes to this register start the following:

1. Set sbbusy.

2. Perform a bus write of the new value of sbdata to sbaddress.

3. If the write succeeded and sbautoincrement is set, increment sbaddress.

4. Clear sbbusy.

Reads from this register start the following:

1. “Return” the data.

2. Set sbbusy.

3. If sbautoincrement is set, increment sbaddress.

4. If sbreadondata is set, perform another system bus read.

5. Clear sbbusy.

Only sbdata0 has this behavior. The other sbdata registers have no side effects. On systems that
have buses wider than 32 bits, a debugger should access sbdata0 after accessing the other sbdata
registers.

31 0

data

32

Field Description Access Reset

data Accesses bits 31:0 of sbdata. R/W 0

32 RISC-V External Debug Support Version 0.13-DRAFT

3.11.24 System Bus Data 63:32 (sbdata1, at 0x3d)

If sbaccess64 and sbaccess128 are 0, then this register is not present.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32

Field Description Access Reset

data Accesses bits 63:32 of sbdata (if the system bus
is that wide).

R/W 0

3.11.25 System Bus Data 95:64 (sbdata2, at 0x3e)

This register only exists if sbaccess128 is 1.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32

Field Description Access Reset

data Accesses bits 95:64 of sbdata (if the system bus
is that wide).

R/W 0

3.11.26 System Bus Data 127:96 (sbdata3, at 0x3f)

This register only exists if sbaccess128 is 1.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32

RISC-V External Debug Support Version 0.13-DRAFT 33

Field Description Access Reset

data Accesses bits 127:96 of sbdata (if the system bus
is that wide).

R/W 0

34 RISC-V External Debug Support Version 0.13-DRAFT

Chapter 4

RISC-V Debug

Modifications to the RISC-V core to support debug are kept to a minimum. There is a special
execution mode (Debug Mode) and a few extra CSRs. The DM takes care of the rest.

4.1 Debug Mode

Debug Mode is a special processor mode used only when a hart is halted for external debugging.
How Debug Mode is implemented is not specified here.

When executing code from the Program Buffer, the hart stays in Debug Mode and the following
apply:

1. All operations are executed at machine mode privilege level, except that mprv in mstatus is
ignored.

2. All interrupts are masked.

3. Exceptions don’t update any registers. That includes cause, epc, tval, dpc, and mstatus.
They do end execution of the Program Buffer.

4. No action is taken if a trigger matches.

5. Trace is disabled.

6. Counters may be stopped, depending on stopcount in dcsr.

7. Timers may be stopped, depending on stoptime in dcsr.

8. The wfi instruction acts as a nop.

9. Almost all instructions that change the privilege level have undefined behavior. This includes
ecall, mret, hret, sret, and uret. (To change the privilege level, the debugger can write
prv in dcsr). The only exception is ebreak. When that is executed in Debug Mode, it halts
the hart again but without updating dpc or dcsr.

35

36 RISC-V External Debug Support Version 0.13-DRAFT

4.2 Load-Reserved/Store-Conditional Instructions

The reservation registered by an lr instruction on a memory address may be lost when entering
Debug Mode or while in Debug Mode. This means that there may be no forward progress if Debug
Mode is entered between lr and sc pairs.

This is a behavior that debug users must be aware of. If they have a breakpoint set between a lr

and sc pair, or are stepping through such code, the sc may never succeed. Fortunately in general
use there will be very few instructions in such a sequence, and anybody debugging it will quickly
notice that the reservation is not occurring. The solution in that case is to set a breakpoint on
the first instruction after the sc and run to it.

4.3 Single Step

A debugger can cause a halted hart to execute a single instruction and then re-enter Debug Mode
by setting step before setting resumereq.

If executing or fetching that instruction causes an exception, Debug Mode is re-entered immediately
after the PC is changed to the exception handler and the appropriate tval and cause registers are
updated.

If executing or fetching the instruction causes a trigger to fire, Debug Mode is re-entered immedi-
ately after that trigger has fired. In that case cause is set to 2 (trigger) instead of 4 (single step).
Whether the instruction is executed or not depends on the specific configuration of the trigger.

If the instruction that is executed causes the PC to change to an address where an instruction
fetch causes an exception, that exception does not occurr until the next time the hart is resumed.
Similarly, a trigger at the new address does not fire until the hart actually attempts to execute that
instruction.

4.4 Reset

If the halt signal (driven by the hart’s halt request bit in the Debug Module) is asserted when a hart
comes out of reset, the hart must enter Debug Mode before executing any instructions, but after
performing any initialization that would usually happen before the first instruction is executed.

4.4.1 dret Instruction

To return from Debug Mode, a new instruction is defined: dret. It has an encoding of 0x7b200073.
On harts which support this instruction, executing dret in Debug Mode changes pc to the value
stored in dpc. The current privilege level is changed to that specified by prv in dcsr. The hart is
no longer in debug mode.

Executing dret outside of Debug Mode causes an illegal instruction exception.

RISC-V External Debug Support Version 0.13-DRAFT 37

It is not necessary for the debugger to know whether an implementation supports dret, as the
Debug Module will ensure that it is executed if necessary. It is defined in this specification only to
reserve the opcode and allow for reusable Debug Module implementations.

4.5 Core Debug Registers

The supported Core Debug Registers must be implemented for each hart that can be debugged.

These registers are only accessible from Debug Mode.

Table 4.1: Core Debug Registers
Address Name Page

0x7b0 Debug Control and Status 37
0x7b1 Debug PC 39
0x7b2 Debug Scratch Register 0
0x7b3 Debug Scratch Register 1

4.5.1 Debug Control and Status (dcsr, at 0x7b0)

31 28 27 16 15 14 13 12 11

xdebugver 0 ebreakm 0 ebreaks ebreaku stepie

4 12 1 1 1 1 1

10 9 8 6 5 3 2 1 0

stopcount stoptime cause 0 step prv

1 1 3 3 1 2

Field Description Access Reset

xdebugver 0: There is no external debug support.
4: External debug support exists as it is described
in this document.
15: There is external debug support, but it does
not conform to any available version of this spec.

R Preset

ebreakm When 1, ebreak instructions in Machine Mode
enter Debug Mode.

R/W 0

ebreaks When 1, ebreak instructions in Supervisor Mode
enter Debug Mode.

R/W 0

ebreaku When 1, ebreak instructions in User/Application
Mode enter Debug Mode.

R/W 0

Continued on next page

38 RISC-V External Debug Support Version 0.13-DRAFT

Field Description Access Reset

stepie 0: Interrupts are disabled during single stepping.
1: Interrupts are enabled during single stepping.
Implementations may hard wire this bit to 0. The
debugger must read back the value it writes to
check whether the feature is supported. If not
supported, interrupt behavior can be emulated by
the debugger.

R/W 0

stopcount 0: Increment counters as usual.
1: Don’t increment any counters while in Debug
Mode or on ebreak instructions that cause en-
try into Debug Mode. These counters include the
cycle and instret CSRs. This is preferred for
most debugging scenarios.
An implementation may choose not to support
writing to this bit. The debugger must read back
the value it writes to check whether the feature is
supported.

R/W Preset

stoptime 0: Increment timers as usual.
1: Don’t increment any hart-local timers while in
Debug Mode.
An implementation may choose not to support
writing to this bit. The debugger must read back
the value it writes to check whether the feature is
supported.

R/W Preset

cause Explains why Debug Mode was entered.
When there are multiple reasons to enter Debug
Mode in a single cycle, the cause with the highest
priority is the one written.
1: An ebreak instruction was executed. (priority
3)
2: The Trigger Module caused a breakpoint ex-
ception. (priority 4)
3: The debugger requested entry to Debug Mode.
(priority 2)
4: The hart single stepped because step was set.
(priority 1)
Other values are reserved for future use.

R 0

step When set and not in Debug Mode, the hart will
only execute a single instruction and then enter
Debug Mode. If the instruction does not com-
plete due to an exception, the hart will immedi-
ately enter Debug Mode before executing the trap
handler, with appropriate exception registers set.

R/W 0

Continued on next page

RISC-V External Debug Support Version 0.13-DRAFT 39

Field Description Access Reset

prv Contains the privilege level the hart was operating
in when Debug Mode was entered. The encoding
is described in Table 4.5. A debugger can change
this value to change the hart’s privilege level when
exiting Debug Mode.
Not all privilege levels are supported on all harts.
If the encoding written is not supported or the
debugger is not allowed to change to it, the hart
may change to any supported privilege level.

R/W 3

4.5.2 Debug PC (dpc, at 0x7b1)

Upon entry to debug mode, dpc is updated with the virtual address of the next instruction to be
executed. The behavior is described in more detail in Table 4.3.

Table 4.3: Virtual address in DPC upon Debug Mode Entry
Cause Virtual Address in DPC

ebreak Address of the ebreak instruction

single step Address of the instruction that would be executed
next if no debugging was going on. Ie. pc + 4 for

32-bit instructions that don’t change program flow,
the destination PC on taken jumps/branches, etc.

trigger module If timing is 0, the address of the instruction which
caused the trigger to fire. If timing is 1, the address of
the next instruction to be executed at the time that

debug mode was entered.

halt request Address of the next instruction to be executed at the
time that debug mode was entered

When resuming, the hart’s PC is updated to the virtual address stored in dpc. A debugger may
write dpc to change where the hart resumes.

XLEN-1 0

dpc

XLEN

4.5.3 Debug Scratch Register 0 (dscratch0, at 0x7b2)

Optional scratch register that can be used by implementations that need it. A debugger must
not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this
register internally).

40 RISC-V External Debug Support Version 0.13-DRAFT

4.5.4 Debug Scratch Register 1 (dscratch1, at 0x7b3)

Optional scratch register that can be used by implementations that need it. A debugger must
not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this
register internally).

4.6 Virtual Debug Registers

Virtual debug registers are a requirement on the debugger SW/interface, not on the Core designer.

Users of the debugger shouldn’t need to know about the core debug registers, but may want to
change things affected by them. A virtual register is one that doesn’t exist directly in the hardware,
but that the debugger exposes as if it does.

Table 4.4: Virtual Core Debug Registers
Address Name Page

virtual Privilege Level 40

4.6.1 Privilege Level (priv, at virtual)

User can read this register to inspect the privilege level that the hart was running in when the hart
halted. User can write this register to change the privilege level that the hart will run in when it
resumes.

This register contains prv from dcsr, but in a place that the user is expected to access. The user
should not access dcsr directly, because doing so might interfere with the debugger.

1 0

prv

2

Table 4.5: Privilege Level Encoding
Encoding Privilege Level

0 User/Application
1 Supervisor
3 Machine

RISC-V External Debug Support Version 0.13-DRAFT 41

Field Description Access Reset

prv Contains the privilege level the hart was operating
in when Debug Mode was entered. The encoding
is described in Table 4.5, and matches the priv-
ilege level encoding from the RISC-V Privileged
ISA Specification. A user can write this value to
change the hart’s privilege level when exiting De-
bug Mode.

R/W 0

42 RISC-V External Debug Support Version 0.13-DRAFT

Chapter 5

Trigger Module

Triggers can cause a breakpoint exception, entry into Debug Mode, or a trace action without having
to execute a special instruction. This makes them invaluable when debugging code from ROM.
They can trigger on execution of instructions at a given memory address, or on the address/data in
loads/stores. These are all features that can be useful without having the Debug Module present,
so the Trigger Module is broken out as a separate piece that can be implemented separately.

Each trigger may support a variety of features. A debugger can build a list of all triggers and their
features as follows:

1. Write 0 to tselect.

2. Read back tselect to confirm this trigger exists. If not, exit.

3. Read tdata1, and possible tdata2 and tdata3 depending on the trigger type.

4. If type is 0, this trigger doesn’t exist. Exit the loop.

5. Repeat, incrementing the value in tselect.

There are two ways to check whether a given trigger is the last one to support these implemen-
tations:

1. When no hardware triggers are implemented at all, all related registers return 0. The
algorithm above terminates when checking type.

2. When 2 triggers are implemented, tselect is just a single bit that selects one of the two.
When the debugger writes 2, it reads back as 0 which terminates the enumeration.

5.1 Trigger Registers

The trigger registers are only accessible in machine and Debug Mode to prevent untrusted user
code from causing entry into Debug Mode without the OS’s permission.

43

44 RISC-V External Debug Support Version 0.13-DRAFT

Table 5.1: Trigger Registers
Address Name Page

0x7a0 Trigger Select 44
0x7a1 Trigger Data 1 44
0x7a1 Match Control 45
0x7a1 Instruction Count 48
0x7a2 Trigger Data 2 45
0x7a3 Trigger Data 3 45

5.1.1 Trigger Select (tselect, at 0x7a0)

This register determines which trigger is accessible through the other trigger registers. The set of
accessible triggers must start at 0, and be contiguous.

Writes of values greater than or equal to the number of supported triggers may result in a different
value in this register than what was written. Debuggers should read back the value to confirm that
what they wrote was a valid index.

Since triggers can be used both by Debug Mode and M Mode, the debugger must restore this
register if it modifies it.

XLEN-1 0

index

XLEN

5.1.2 Trigger Data 1 (tdata1, at 0x7a1)

XLEN-1 XLEN-4 XLEN-5 XLEN-6 0

type dmode data

4 1 XLEN - 5

RISC-V External Debug Support Version 0.13-DRAFT 45

Field Description Access Reset

type 0: There is no trigger at this tselect.
1: The trigger is a legacy SiFive address match
trigger. These should not be implemented and
aren’t further documented here.
2: The trigger is an address/data match trig-
ger. The remaining bits in this register act as
described in mcontrol.
3: The trigger is an instruction count trigger. The
remaining bits in this register act as described in
icount.
15: This trigger exists (so enumeration shouldn’t
terminate), but is not currently available.
Other values are reserved for future use.

R Preset

dmode 0: Both Debug and M Mode can write the tdata

registers at the selected tselect.
1: Only Debug Mode can write the tdata regis-
ters at the selected tselect. Writes from other
modes are ignored.
This bit is only writable from Debug Mode.

R/W 0

data Trigger-specific data. R/W Preset

5.1.3 Trigger Data 2 (tdata2, at 0x7a2)

Trigger-specific data.

XLEN-1 0

data

XLEN

5.1.4 Trigger Data 3 (tdata3, at 0x7a3)

Trigger-specific data.

XLEN-1 0

data

XLEN

5.1.5 Match Control (mcontrol, at 0x7a1)

This register is accessible as tdata1 when type is 2.

46 RISC-V External Debug Support Version 0.13-DRAFT

Writing unsupported values to any field in this register results in the reset value being written
instead. When a debugger wants to use a feature, it must write the appropriate value and then
read back the register to determine whether it is supported.

Address and data trigger implementation are heavily dependent on how the processor core is imple-
mented. To accommodate various implementations, execute, load, and store address/data triggers
may fire at whatever point in time is most convenient for the implementation. The debugger
may request specific timings as described in timing. Table 5.3 suggests timings for the best user
experience.

Table 5.3: Suggested Breakpoint Timings
Match Type Suggested Trigger Timing

Execute Address Before
Execute Instruction Before

Execute Address+Instruction Before
Load Address Before

Load Data After
Load Address+Data After

Store Address Before
Store Data Before

Store Address+Data Before

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-11 XLEN-12 21 20 19

type dmode maskmax 0 hit select

4 1 6 XLEN - 32 1 1

18 17 12 11 10 7 6 5

timing action chain match m 0

1 6 1 4 1 1

4 3 2 1 0

s u execute store load

1 1 1 1 1

Field Description Access Reset

maskmax Specifies the largest naturally aligned powers-of-
two (NAPOT) range supported by the hardware.
The value is the logarithm base 2 of the number
of bytes in that range. A value of 0 indicates
that only exact value matches are supported (one
byte range). A value of 63 corresponds to the
maximum NAPOT range, which is 263 bytes in
size.

R Preset

hit If this optional bit is implemented, the hardware
sets it when this trigger matches. The trigger’s
user can set or clear it at any time. The trigger’s
user can use this bit to determine which trigger(s)
matched. If the bit is not implemented, it is al-
ways 0 and writing it has no effect.

R/W 0

Continued on next page

RISC-V External Debug Support Version 0.13-DRAFT 47

Field Description Access Reset

select 0: Perform a match on the virtual address.
1: Perform a match on the data value loaded/s-
tored, or the instruction executed.

R/W 0

timing 0: The action for this trigger will be taken just be-
fore the instruction that triggered it is executed,
but after all preceding instructions are are com-
mitted.
1: The action for this trigger will be taken af-
ter the instruction that triggered it is executed.
It should be taken before the next instruction is
executed, but it is better to implement triggers
and not implement that suggestion than to not
implement them at all.
Most hardware will only implement one timing or
the other, possibly dependent on select, execute,
load, and store. This bit primarily exists for the
hardware to communicate to the debugger what
will happen. Hardware may implement the bit
fully writable, in which case the debugger has a
little more control.
Data load triggers with timing of 0 will result in
the same load happening again when the debugger
lets the hart run. For data load triggers, debug-
gers must first attempt to set the breakpoint with
timing of 1.
A chain of triggers that don’t all have the same
timing value will never fire (unless consecutive in-
structions match the appropriate triggers).

R/W 0

action Determines what happens when this trigger
matches.
0: Raise a breakpoint exception. (Used when soft-
ware wants to use the trigger module without an
external debugger attached.)
1: Enter Debug Mode. (Only supported when
dmode is 1.)
2: Start tracing.
3: Stop tracing.
4: Emit trace data for this match. If it is a data
access match, emit appropriate Load/Store Ad-
dress/Data. If it is an instruction execution, emit
its PC.
Other values are reserved for future use.

R/W 0

Continued on next page

48 RISC-V External Debug Support Version 0.13-DRAFT

Field Description Access Reset

chain 0: When this trigger matches, the configured ac-
tion is taken.
1: While this trigger does not match, it prevents
the trigger with the next index from matching.

R/W 0

match 0: Matches when the value equals tdata2.
1: Matches when the top M bits of the value
match the top M bits of tdata2. M is XLEN-1
minus the index of the least-significant bit con-
taining 0 in tdata2.
2: Matches when the value is greater than (un-
signed) or equal to tdata2.
3: Matches when the value is less than (unsigned)
tdata2.
4: Matches when the lower half of the value equals
the lower half of tdata2 after the lower half of the
value is ANDed with the upper half of tdata2.
5: Matches when the upper half of the value
equals the lower half of tdata2 after the upper
half of the value is ANDed with the upper half of
tdata2.
Other values are reserved for future use.

R/W 0

m When set, enable this trigger in M mode. R/W 0

s When set, enable this trigger in S mode. R/W 0

u When set, enable this trigger in U mode. R/W 0

execute When set, the trigger fires on the virtual address
or opcode of an instruction that is executed.

R/W 0

store When set, the trigger fires on the virtual address
or data of a store.

R/W 0

load When set, the trigger fires on the virtual address
or data of a load.

R/W 0

5.1.6 Instruction Count (icount, at 0x7a1)

This register is accessible as tdata1 when type is 3.

Writing unsupported values to any field in this register results in the reset value being written
instead. When a debugger wants to use a feature, it must write the appropriate value and then
read back the register to determine whether it is supported.

This trigger type is intended to be used as a single step that’s useful both for external debuggers
and for software monitor programs. For that case it is not necessary to support count greater
than 1. The only two combinations of the mode bits that are useful in those scenarios are u by
itself, or m, s, and u all set.

RISC-V External Debug Support Version 0.13-DRAFT 49

If the hardware limits count to 1, and changes mode bits instead of decrementing count, this
register can be implemented with just 2 bits. One for u, and one for m and s tied together.
If only the external debugger or only a software monitor needs to be supported, a single bit is
enough.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 25 24 23 10

type dmode 0 hit count

4 1 XLEN - 30 1 14

9 8 7 6 5 0

m 0 s u action

1 1 1 1 6

Field Description Access Reset

hit If this optional bit is implemented, the hardware
sets it when this trigger matches. The trigger’s
user can set or clear it at any time. The trigger’s
user can use this bit to determine which trigger(s)
matched. If the bit is not implemented, it is al-
ways 0 and writing it has no effect.

R/W 0

count When count is decremented to 0, the trigger fires.
Instead of changing count from 1 to 0, it is also
acceptable for hardware to clear m, s, and u. This
allows count to be hard-wired to 1 if this register
just exists for single step.

R/W 1

m When set, every instruction completed or excep-
tion taken in M mode decrements count by 1.

R/W 0

s When set, every instruction completed or excep-
tion taken in S mode decrements count by 1.

R/W 0

u When set, every instruction completed or excep-
tion taken in U mode decrements count by 1.

R/W 0

action Determines what happens when this trigger
matches.
0: Raise a breakpoint exception. (Used when soft-
ware wants to use the trigger module without an
external debugger attached.)
1: Enter Debug Mode. (Only supported when
dmode is 1.)
2: Start tracing.
3: Stop tracing.
4: Emit trace data for this match. If it is a data
access match, emit appropriate Load/Store Ad-
dress/Data. If it is an instruction execution, emit
its PC.
Other values are reserved for future use.

R/W 0

50 RISC-V External Debug Support Version 0.13-DRAFT

Chapter 6

Debug Transport Module (DTM)

Debug Transport Modules provide access to the DM over one or more transports (eg. JTAG or
USB).

There may be multiple DTMs in a single platform. Ideally every component that communicates
with the outside world includes a DTM, allowing a platform to be debugged through every transport
it supports. For instance a USB component could include a DTM. This would trivially allow any
platform to be debugged over USB. All that is required is that the USB module already in use also
has access to the Debug Module Interface.

Using multiple DTMs at the same time is not supported. It is left to the user to ensure this does
not happen.

This specification defines a JTAG DTM in Section 6.1. Additional DTMs may be added in future
versions of this specification.

6.1 JTAG Debug Transport Module

This Debug Transport Module is based around a normal JTAG Test Access Port (TAP). The JTAG
TAP allows access to arbitrary JTAG registers by first selecting one using the JTAG instruction
register (IR), and then accessing it through the JTAG data register (DR).

6.1.1 JTAG Background

JTAG refers to IEEE Std 1149.1-2013. It is a standard that defines test logic that can be included
in an integrated circuit to test the interconnections between integrated circuits, test the integrated
circuit itself, and observe or modify circuit activity during the components normal operation. This
specification uses the latter functionality. The JTAG standard defines a Test Access Port (TAP)
that can be used to read and write a few custom registers, which can be used to communicate with
debug hardware in a component.

51

52 RISC-V External Debug Support Version 0.13-DRAFT

6.1.2 JTAG DTM Registers

JTAG TAPs used as a DTM must have an IR of at least 5 bits. When the TAP is reset, IR must
default to 00001, selecting the IDCODE instruction. A full list of JTAG registers along with their
encoding is in Table 6.1. If the IR actually has more than 5 bits, then the encodings in Table 6.1
should be extended with 0’s in their most significant bits. The only regular JTAG registers a
debugger might use are BYPASS and IDCODE, but this specification leaves IR space for many
other standard JTAG instructions. Unimplemented instructions must select the BYPASS register.

Table 6.1: JTAG DTM TAP Registers
Address Name Description Page

0x00 BYPASS JTAG recommends this encoding
0x01 IDCODE JTAG recommends this encoding
0x10 DTM Control and Status For Debugging 53
0x11 Debug Module Interface Access For Debugging 54
0x12 Reserved (BYPASS) Reserved for future RISC-V debugging
0x13 Reserved (BYPASS) Reserved for future RISC-V debugging
0x14 Reserved (BYPASS) Reserved for future RISC-V debugging
0x15 Reserved (BYPASS) Reserved for future RISC-V standards
0x16 Reserved (BYPASS) Reserved for future RISC-V standards
0x17 Reserved (BYPASS) Reserved for future RISC-V standards
0x1f BYPASS JTAG requires this encoding

6.1.3 IDCODE (at 0x01)

This register is selected (in IR) when the TAP state machine is reset. Its definition is exactly as
defined in IEEE Std 1149.1-2013.

This entire register is read-only.

31 28 27 12 11 1 0

Version PartNumber ManufId 1

4 16 11 1

Field Description Access Reset

Version Identifies the release version of this part. R Preset

PartNumber Identifies the designer’s part number of this part. R Preset

ManufId Identifies the designer/manufacturer of this part.
Bits 6:0 must be bits 6:0 of the designer/manufac-
turer’s Identification Code as assigned by JEDEC
Standard JEP106. Bits 10:7 contain the modulo-
16 count of the number of continuation characters
(0x7f) in that same Identification Code.

R Preset

RISC-V External Debug Support Version 0.13-DRAFT 53

6.1.4 DTM Control and Status (dtmcs, at 0x10)

The size of this register will remain constant in future versions so that a debugger can always
determine the version of the DTM.

31 18 17 16 15

0 dmihardreset dmireset 0

14 1 1 1

14 12 11 10 9 4 3 0

idle dmistat abits version

3 2 6 4

Field Description Access Reset

dmihardreset Writing 1 to this bit does a hard reset of the DTM,
causing the DTM to forget about any outstand-
ing DMI transactions. In general this should only
be used when the Debugger has reason to expect
that the outstanding DMI transaction will never
complete (e.g. a reset condition caused an inflight
DMI transaction to be cancelled).

W1 0

dmireset Writing 1 to this bit clears the sticky error state
and allows the DTM to retry or complete the pre-
vious transaction.

W1 0

idle This is a hint to the debugger of the minimum
number of cycles a debugger should spend in Run-
Test/Idle after every DMI scan to avoid a ‘busy’
return code (dmistat of 3). A debugger must still
check dmistat when necessary.
0: It is not necessary to enter Run-Test/Idle at
all.
1: Enter Run-Test/Idle and leave it immediately.
2: Enter Run-Test/Idle and stay there for 1 cycle
before leaving.
And so on.

R Preset

dmistat 0: No error.
1: Reserved. Interpret the same as 2.
2: An operation failed (resulted in op of 2).
3: An operation was attempted while a DMI ac-
cess was still in progress (resulted in op of 3).

R 0

abits The size of address in dmi. R Preset

version 0: Version described in spec version 0.11.
1: Version described in spec version 0.13 (and
later?), which reduces the DMI data width to 32
bits.
15: Version not described in any available version
of this spec.

R 1

54 RISC-V External Debug Support Version 0.13-DRAFT

6.1.5 Debug Module Interface Access (dmi, at 0x11)

This register allows access to the Debug Module Interface (DMI).

In Update-DR, the DTM starts the operation specified in op unless the current status reported in
op is sticky.

In Capture-DR, the DTM updates data with the result from that operation, updating op if the
current op isn’t sticky.

See Section B.1 and Table B.1 for examples of how this is used.

The still-in-progress status is sticky to accommodate debuggers that batch together a number of
scans, which must all be executed or stop as soon as there’s a problem.

For instance a series of scans may write a Debug Program and execute it. If one of the writes
fails but the execution continues, then the Debug Program may hang or have other unexpected
side effects.

abits+33 34 33 2 1 0

address data op

abits 32 2

Field Description Access Reset

address Address used for DMI access. In Update-DR this
value is used to access the DM over the DMI.

R/W 0

data The data to send to the DM over the DMI during
Update-DR, and the data returned from the DM
as a result of the previous operation.

R/W 0

Continued on next page

RISC-V External Debug Support Version 0.13-DRAFT 55

Field Description Access Reset

op When the debugger writes this field, it has the
following meaning:
0: Ignore data and address. (nop)
Don’t send anything over the DMI during
Update-DR. This operation should never result in
a busy or error response. The address and data
reported in the following Capture-DR are unde-
fined.
1: Read from address. (read)
2: Write data to address. (write)
3: Reserved.
When the debugger reads this field, it means the
following:
0: The previous operation completed successfully.
1: Reserved.
2: A previous operation failed. The data scanned
into dmi in this access will be ignored. This status
is sticky and can be cleared by writing dmireset in
dtmcs.
This indicates that the DM itself responded with
an error. Note: there are no specified cases in
which the DM would respond with an error, and
DMI is not required to support returning errors.
3: An operation was attempted while a DMI re-
quest is still in progress. The data scanned into
dmi in this access will be ignored. This status is
sticky and can be cleared by writing dmireset in
dtmcs. If a debugger sees this status, it needs to
give the target more TCK edges between Update-
DR and Capture-DR. The simplest way to do that
is to add extra transitions in Run-Test/Idle.
(The DTM, DM, and/or component may be in
different clock domains, so synchronization may
be required. Some relatively fixed number of TCK
ticks may be needed for the request to reach the
DM, complete, and for the response to be syn-
chronized back into the TCK domain.)

R/W 2

6.1.6 BYPASS (at 0x1f)

1-bit register that has no effect. It is used when a debugger does not want to communicate with
this TAP.

56 RISC-V External Debug Support Version 0.13-DRAFT

This entire register is read-only.

0

0

1

6.1.7 Recommended JTAG Connector

To make it easy to acquire debug hardware, this spec recommends a connector that is compatible
with the Atmel AVR JTAG Connector, as described below.

The connector is a .05”-spaced, gold-plated male header with .016” thick hardened copper or beryl-
lium bronze square posts (SAMTEC FTSH-105 or equivalent). Female connectors are compatible
20µm gold connectors.

Viewing the male header from above (the pins pointing at your eye), a target’s connector looks as
it does in Table 6.5. The function of each pin is described in Table 6.6.

Table 6.5: JTAG Connector Diagram
TCK 1 2 GND

TDO 3 4 VCC

TMS 5 6 (SRSTn)

(NC) 7 8 (TRSTn)

TDI 9 10 GND

Target connectors may be shrouded. In that case the key slot should be next to pin 5. Female
headers should have a matching key.

Debug adapters should be tagged or marked with their isolation voltage threshold (i.e. unisolated,
250V, etc.).

All debug adapter pins other than GND should be current-limited to 20mA.

RISC-V External Debug Support Version 0.13-DRAFT 57

Table 6.6: JTAG Connector Pinout
1 TCK JTAG TCK signal, driven by the debug adapter. This

pin must be clearly marked in both male and female
headers.

5 TMS JTAG TMS signal, driven by debug adapter.

9 TDI JTAG TDI signal, driven by the debug adapter.

3 TDO JTAG TDO signal, driven by the target.

8 TRSTn Test Reset (optional, only used by some devices. Used
to reset the JTAG TAP Controller).

4 VCC Reference voltage for logic high. A debug adapter
may attempt to draw up to 20mA from this pin to

power itself, but a target is not obligated to provide
that power.

2, 10 GND Target ground.

6 SRSTn Active-low reset signal, driven by the debug adapter.
Asserting reset should reset any RISC-V cores as well
as any other peripherals on the PCB. It should not

reset the debug logic. Although connecting this pin is
optional, it is recommended as it allows the debugger
to hold the target device in a reset state, which may

be essential to debug some scenarios. If not
implemented in a target, this pin must not be

connected.

58 RISC-V External Debug Support Version 0.13-DRAFT

Appendix A

Hardware Implementations

Below are two possible implementations. A designer could choose one, mix and match, or come up
with their own design.

A.1 Abstract Command Based

Halting happens by stalling the hart execution pipeline.

Muxes on the register file(s) allow for accessing GPRs and CSRs using the Access Register abstract
command.

System Bus Access allows main memory access.

A.2 Execution Based

This implementation only implements the Access Register abstract command for GPRs on a halted
hart, and relies on the Program Buffer for all other operations.

This method uses the hart’s existing pipeline and ability to execute from arbitrary memory locations
to avoid modifications to a hart’s datapath. When the halt request bit is set, the Debug Module
raises a special interrupt to the selected hart(s). This interrupt causes each hart to enter Debug
Mode and jump to a defined memory region that is serviced by the DM. When taking this exception,
pc is saved to dpc and cause is updated in dcsr.

The code in the Debug Module causes the hart to execute a “park loop”. In the park loop the hart
writes its mhartid to a memory location within the Debug Module to indicate that it is halted.
To allow the DM to individually control one out of several halted harts, each hart polls for flags
in a DM-controlled memory location to determine whether the debugger wants it to execute the
Program Buffer or perform a resume.

To execute an abstract command, the DM first populates some internal words of program buffer

59

60 RISC-V External Debug Support Version 0.13-DRAFT

according to command. When transfer is set, the debugger populates these words with lw <gpr>,

0x400(zero) or sw 0x400(zero), <gpr>. 64- and 128-bit accesses use ld/sd and lq/sq respec-
tively. If transfer is not set, these instructions are populated as nops. If execute is set, execution
continues to the debugger-controlled Program Buffer, otherwise the debug module causes a ebreak

to execute immediately.

When ebreak is executed (indicating the end of the Program Buffer code) the hart returns to its
park loop. If an exception is encountered, the hart jumps to a defined debug exception address
within the Debug Module. The code at that address causes the hart to write to an address in the
Debug Module which indicates exception. Then the hart jumps back to the park loop. The DM
infers from the write that there was an exception, and sets cmderr appropriately.

To resume execution, the debug module sets a flag which causes the hart to execute a dret. When
dret is executed, pc is restored from dpc and normal execution resumes at the privilege set by prv.

data0 etc. are mapped into regular memory at an address relative to zero with only a 12-bit imm.
The exact address is an implementation detail that a debugger must not rely on. For example, the
data registers might be mapped to 0x400.

For additional flexibility, progbuf0, etc. are mapped into regular memory immediately preceding
data0, in order to form a contiguous region of memory which can be used for either program
execution or data transfer.

Appendix B

Debugger Implementation

This section details how an external debugger might use the described debug interface to perform
some common operations on RISC-V cores using the JTAG DTM described in Appendix ??. All
these examples assume a 32-bit core but it should be easy to adapt the examples to 64- or 128-bit
cores.

To keep the examples readable, they all assume that everything succeeds, and that they complete
faster than the debugger can perform the next access. This will be the case in a typical JTAG
setup. However, the debugger must always check the sticky error status bits after performing a
sequence of actions. If it sees any that are set, then it should attempt the same actions again,
possibly while adding in some delay, or explicit checks for status bits.

B.1 Debug Module Interface Access

To read an arbitrary Debug Module register, select dmi, and scan in a value with op set to 1,
and address set to the desired register address. In Update-DR the operation will start, and in
Capture-DR its results will be captured into data. If the operation didn’t complete in time, op
will be 3 and the value in data must be ignored. The busy condition must be cleared by writing
dmireset in dtmcs, and then the second scan scan must be performed again. This process must be
repeated until op returns 0. In later operations the debugger should allow for more time between
Capture-DR and Update-DR.

To write an arbitrary Debug Bus register, select dmi, and scan in a value with op set to 2, and
address and data set to the desired register address and data respectively. From then on everything
happens exactly as with a read, except that a write is performed instead of the read.

It should almost never be necessary to scan IR, avoiding a big part of the inefficiency in typical
JTAG use.

61

62 RISC-V External Debug Support Version 0.13-DRAFT

B.2 Main Loop

A debugger continuously monitors all harts to see if any of them have spontaneously halted. To do
this efficiently when there are many harts, it uses the haltsum registers. Assuming the maximum
number of harts exist, first it checks haltsum3. For each bit set there, it writes hartsel, and checks
haltsum2. This process repeats through haltsum1 and haltsum0. Depending on how many harts
exist, the process should start at one of the lower haltsum registers.

B.3 Halting

To halt one or more harts, the debugger selects them, sets haltreq, and then waits for allhalted to
indicate the harts are halted before clearing haltreq to 0.

B.4 Running

First, the debugger should restore any registers that it has overwritten. Then it can let the selected
harts run by setting resumereq. Once allresumeack is set, the debugger knows the hart has resumed,
and it can clear resumereq. Note that harts might halt very quickly after resuming (e.g. by hitting
a software breakpoint) so the debugger cannot use allhalted/anyhalted to check whether the hart
resumed.

B.5 Single Step

Using the hardware single step feature is almost the same as regular running. The debugger just
sets step in dcsr before letting the hart run. The hart behaves exactly as in the running case,
except that interrupts may be disabled (depending on stepie) and it only fetches and executes a
single instruction before re-entering Debug Mode.

B.6 Accessing Registers

B.6.1 Using Abstract Command

Read s0 using abstract command:

Op Address Value Comment

Write command size = 2, transfer, 0x1008 Read s0

Read data0 - Returns value that was in s0

Write mstatus using abstract command:

RISC-V External Debug Support Version 0.13-DRAFT 63

Op Address Value Comment

Write data0 new value

Write command size = 2, transfer, write, 0x300 Write mstatus

B.6.2 Using Program Buffer

Abstract commands are used to exchange data with GPRs. Using this mechanism, other registers
can be accessed by moving their value into/out of GPRs.

Write mstatus using program buffer:

Op Address Value Comment

Write progbuf0 csrw s0,

MSTATUS

Write progbuf1 ebreak

Write data0 new value

Write command size = 2,
postexec,
transfer,

write, 0x1008

Write s0, then execute program buffer

Read f1 using program buffer:

Op Address Value Comment

Write progbuf0 fmv.x.s s0, f1

Write progbuf1 ebreak

Write command postexec Execute program buffer

Write command transfer 0x1008 read s0

Read data0 - Returns the value that was in f1

B.7 Reading Memory

B.7.1 Using System Bus Access

Read a word from memory using system bus access:

Op Address Value Comment

Write sbcs sbaccess = 2, sbreadonaddr Setup

Write sbaddress0 address

Read sbdata0 - Value read from memory

Read block of memory using system bus access:

64 RISC-V External Debug Support Version 0.13-DRAFT

Op Address Value Comment

Write sbcs sbaccess = 2, sbreadonaddr,
sbreadondata, sbautoincrement

Turn on autoread and autoincrement

Write sbaddress0 address Writing address triggers read and increment

Read sbdata0 - Value read from memory

Read sbdata0 - Next value read from memory

...

Write sbcs 0 Disable autoread

Read sbdata0 - Get last value read from memory.

B.7.2 Using Program Buffer

Read a word from memory using program buffer:

Op Address Value Comment

Write progbuf0 lw s0, 0(s0)

Write progbuf1 ebreak

Write data0 address

Write command write, postexec, 0x1008 Write s0, then execute program buffer

Write command 0x1008 Read s0

Read data0 - Value read from memory

Read block of memory using program buffer:

Op Address Value Comment

Write progbuf0 lw s1, 0(s0)

Write progbuf1 addi s0, s0, 4

Write progbuf2 ebreak

Write data0 address

Write command write, postexec, 0x1008 Write s0, then execute program buffer

Write command postexec, 0x1009 Read s1, then execute program buffer

Write abstractauto autoexecdata [0] Set autoexecdata [0]

Read data0 - Get value read from memory, then execute program
buffer

Read data0 - Get next value read from memory, then execute
program buffer

...

Write abstractauto 0 Clear autoexecdata [0]

Read data0 - Get last value read from memory.

TODO: Table B.1 shows the scans involved in reading a single word using this method.

RISC-V External Debug Support Version 0.13-DRAFT 65

Table B.1: Memory Read Timeline
JTAG State Activity

TODO TODO TODO

B.8 Writing Memory

B.8.1 Using System Bus Access

Write a word to memory using system bus access:

Op Address Value Comment

Write sbaddress0 address

Write sbdata0 value

Write block of memory using system bus access:

Op Address Value Comment

Write sbcs sbaccess = 2, sbautoincrement Turn on autoincrement

Write sbaddress0 address

Write sbdata0 value0

Write sbdata0 value1

...

Write sbdata0 valueN

B.8.2 Using Program Buffer

Write a word to memory using program buffer:

Op Address Value Comment

Write progbuf0 sw s1, 0(s0)

Write progbuf1 ebreak

Write data0 value

Write command write, 0x1008 Write s0

Write data0 address

Write command write, postexec, 0x1009 Write s1, then execute program buffer

Write block of memory using program buffer:

66 RISC-V External Debug Support Version 0.13-DRAFT

Op Address Value Comment

Write progbuf0 sw s1, 0(s0)

Write progbuf1 addi s0, s0, 4

Write progbuf2 ebreak

Write data0 address

Write command write, 0x1008 Write s0

Write data0 value0

Write command write, postexec, 0x1009 Write s1, then execute program buffer

Write abstractauto autoexecdata [0] Set autoexecdata [0]

Write data0 value1

...

Write data0 valueN

Write abstractauto 0 Clear autoexecdata [0]

B.9 Handling Exceptions

Generally the debugger can avoid exceptions by being careful with the programs it writes. Some-
times they are unavoidable though, eg. if the user asks to access memory or a CSR that is not
implemented. A typical debugger will not know enough about the platform to know what’s going
to happen, and must attempt the access to determine the outcome.

When an exception occurs while executing the Program Buffer, cmderr becomes set. The debugger
can check this field to see whether a program encountered an exception. If there was an exception,
it’s left to the debugger to know what must have caused it.

B.10 Quick Access

Halt the hart for a minimum amount of time to perform a single memory write.

There are a variety of instructions to transfer data between GPRs and the data registers. They
are either loads/stores or CSR reads/writes. The specific addresses also vary. This is all specified
in hartinfo. The example here uses the pseudo-op transfer dest, src to represent all these
options.

RISC-V External Debug Support Version 0.13-DRAFT 67

Op Address Value Comment

Write progbuf0 transfer arg2, s0 Save s0

Write progbuf1 transfer s0, arg0 Read first argument (address)

Write progbuf2 transfer arg0, s1 Save s1

Write progbuf3 transfer s1, arg1 Read second argument (data)

Write progbuf4 sw s1, 0(s0)

Write progbuf5 transfer s1, arg0 Restore s1

Write progbuf6 transfer s0, arg2 Restore s0

Write progbuf7 ebreak

Write data0 address

Write data1 data

Write command 0x10000000 Perform quick access

68 RISC-V External Debug Support Version 0.13-DRAFT

Appendix C

Future Ideas

All items in this section are future ideas and should not be considered part of the
specification.

Some future version of this spec may implement some of the following features.

1. The spec defines several additions to the Device Tree which enable a debugger to discover
hart IDs and supported triggers for all the harts in the system.

2. DTMs can function as general bus slaves, so they would look like regular RAM to bus masters.

3. Harts can be divided into groups. All the harts in the same group can be halted/run/stepped
simultaneously. When a hart hits a breakpoint, all the other harts in the same group also
halt within a few clock cycles.

4. DTMs are specified for protocols like USB, I2C, SPI, and SWD.

5. Hart registers can be read without halting the processor.

6. The debugger can communicate with the power manager to power cores up or down, and to
query their status.

7. Serial ports can raise an interrupt when a send/receive queue becomes full/empty.

8. The debug interrupt can be masked by running code. If the interrupt is asserted, then
deasserted, and then asserted again the debug interrupt happens anyway. This mechanism
can be used to eg. read/write memory with minimal interruption, making sure never to
interrupt during a critical piece of code.

9. The debugger can non-intrusively sample a recent PC value from any running hart.

10. The Debug Module can include a serial interface for re-using the DTM interface as a generic
communication interface.

69

70 RISC-V External Debug Support Version 0.13-DRAFT

C.1 Serial Ports

The Debug Module may implement up to 8 serial ports. They support basic flow control and full
duplex data transfer between a component and the debugger, essentially allowing the Debug Trans-
port to be used to communicate with a debug monitor running on a hart, or more generally emulate
devices which aren’t present. All these uses require software support, and are not further specified
here. Only the DMI side of the Debug Module serial registers are defined in this specification as
the core side interface should look like a peripheral device.

Table C.1: Debug Module Debug Bus Registers
Address Name Page

0x34 Serial Control and Status 70
0x35 Serial TX Data 71
0x36 Serial RX Data 71

C.1.1 Serial Control and Status (sercs, at 0x34)

If serialcount is 0, this register is not present.

31 28 27 26 24 23 22 21 20 19 18

serialcount 0 serial error7 valid7 full7 error6 valid6 full6

4 1 3 1 1 1 1 1 1

17 16 15 14 13 12 11 10 9

error5 valid5 full5 error4 valid4 full4 error3 valid3 full3

1 1 1 1 1 1 1 1 1

8 7 6 5 4 3 2 1 0

error2 valid2 full2 error1 valid1 full1 error0 valid0 full0

1 1 1 1 1 1 1 1 1

Field Description Access Reset

serialcount Number of supported serial ports. R Preset

serial Select which serial port is accessed by serrx and
sertx.

R/W 0

error0 1 when the debugger-to-core queue for serial port
0 has over or underflowed. This bit will remain
set until it is reset by writing 1 to this bit.

R/W1C 0

valid0 1 when the core-to-debugger queue for serial port
0 is not empty.

R 0

full0 1 when the debugger-to-core queue for serial port
0 is full.

R 0

RISC-V External Debug Support Version 0.13-DRAFT 71

C.1.2 Serial TX Data (sertx, at 0x35)

If serialcount is 0, this register is not present.

This register provides access to the write data queue of the serial port selected by serial in sercs.

If the error bit is not set and the queue is not full, a write to this register adds the written data
to the core-to-debugger queue. Otherwise the error bit is set and the write returns error.

A read to this register returns the last data written.

31 0

data

32

C.1.3 Serial RX Data (serrx, at 0x36)

If serialcount is 0, this register is not present.

This register provides access to the read data queues of the serial port selected by serial in sercs.

If the error bit is not set and the queue is not empty, a read from this register reads the oldest
entry in the debugger-to-core queue, and removes that entry from the queue. Otherwise the error

bit is set and the read returns error.

This entire register is read-only.

31 0

data

32

Index

abits, 53
abstractauto, 24
abstractcs, 22
Access Register, 10
ackhavereset, 19
action, 47, 49
address, 27, 30, 54
allhalted, 18
allhavereset, 17
allnonexistent, 18
allresumeack, 18
allrunning, 18
allunavail, 18
anyhalted, 18
anyhavereset, 17
anynonexistent, 18
anyresumeack, 18
anyrunning, 18
anyunavail, 18
authbusy, 18
authdata, 26
authenticated, 18
autoexecdata, 24
autoexecprogbuf, 24

busy, 22
BYPASS, 55

cause, 38
chain, 48
cmderr, 23
cmdtype, 11, 12, 24
command, 23
control, 24
count, 49

data, 31–33, 45, 54
data0, 25
dataaccess, 21
dataaddr, 21
datacount, 23

datasize, 21

dcsr, 37

devtreeaddr0, 24

devtreevalid, 18

dmactive, 20

dmcontrol, 19

dmi, 54

dmihardreset, 53

dmireset, 53

dmistat, 53

dmode, 45

dmstatus, 17

dpc, 39

dscratch0, 39

dscratch1, 40

dtmcs, 53

ebreakm, 37

ebreaks, 37

ebreaku, 37

error0, 70

execute, 48

field, 2

full0, 70

haltreq, 19

haltsum0, 26

haltsum1, 26

haltsum2, 26

haltsum3, 27

hartinfo, 21

hartreset, 19

hartsel, 19

hartselhi, 20

hartsello, 20

hasel, 20

hawindow, 22

hawindowsel, 22

hit, 46, 49

72

RISC-V External Debug Support Version 0.13-DRAFT 73

icount, 48
IDCODE, 52
idle, 53
impebreak, 17

load, 48

m, 48, 49
ManufId, 52
maskmax, 46
match, 48
mcontrol, 45

ndmreset, 20
nextdm, 25
nscratch, 21

op, 55

PartNumber, 52
postexec, 11
priv, 40
progbuf0, 25
progbufsize, 22
prv, 39, 41

Quick Access, 11

regno, 11
resumereq, 19

s, 48, 49
sbaccess, 28
sbaccess128, 29
sbaccess16, 29
sbaccess32, 29
sbaccess64, 29
sbaccess8, 29
sbaddress0, 29
sbaddress1, 30
sbaddress2, 30
sbaddress3, 27
sbasize, 29
sbautoincrement, 29
sbbusy, 28
sbbusyerror, 28
sbcs, 28
sbdata0, 31
sbdata1, 32
sbdata2, 32

sbdata3, 32
sberror, 29
sbreadonaddr, 28
sbreadondata, 29
sbversion, 28
select, 47
sercs, 70
serial, 70
serialcount, 70
serrx, 71
sertx, 71
shortname, 2
size, 11
step, 38
stepie, 38
stopcount, 38
stoptime, 38
store, 48

tdata1, 44
tdata2, 45
tdata3, 45
timing, 47
transfer, 11
tselect, 44
type, 45

u, 48, 49

valid0, 70
Version, 52
version, 18, 53

write, 11

xdebugver, 37

74 RISC-V External Debug Support Version 0.13-DRAFT

Appendix D

Change Log

Revision Date Author(s) Description

32cbb9b 2018-03-19 Tim Newsome Nonexistent/unavailable harts are not halted.
1360e09 2018-03-16 Tim Newsome Merge pull request #243 from riscv/prvreset
efb7e45 2018-03-15 Tim Newsome Change dcsr.prv reset value to 3
349e25d 2018-03-14 Tim Newsome Merge pull request #238 from riscv/core
ddec145 2018-03-14 Tim Newsome Be more precise about core vs hart
dda5b5f 2018-03-14 Tim Newsome Merge pull request #237 from riscv/processor
8ac9273 2018-03-14 Tim Newsome Be more precise about processor vs hart
4f91006 2018-03-14 Tim Newsome Merge pull request #231 from riscv/lrsc
fdb9d33 2018-03-14 Tim Newsome Merge branch ’master’ into lrsc
b939d49 2018-03-13 Megan Wachs Merge pull request #218 from riscv/many harts bwc
bafeeaa 2018-03-13 Tim Newsome Rebuild PDF
1ddc3e7 2018-03-13 Tim Newsome Merge branch ’master’ into lrsc
6a85d53 2018-03-13 Tim Newsome Incorporate review feedback.
8ad46ce 2018-03-12 Megan Wachs Merge remote-tracking branch ’origin/master’ into

many harts bwc
6ae5e50 2018-03-12 Tim Newsome Merge pull request #224 from riscv/dms
c3aa334 2018-03-12 Tim Newsome Merge branch ’master’ into dms
f213315 2018-03-09 Tim Newsome Clarify user responsibilities when debugging lr/sc
58918c3 2018-03-07 Tim Newsome Merge pull request #217 from riscv/trigger hit
0044dcb 2018-03-07 Tim Newsome Merge branch ’master’ into trigger hit
1135bf3 2018-03-06 Tim Newsome Incorporate feedback.
8f35e7e 2018-03-05 Megan Wachs gt 1024: Clarify that some registers may not be

present for small numbers of harts
683ae37 2018-02-14 Megan Wachs hartsum-¿haltsum
ee51758 2018-02-14 Megan Wachs Modification of ¿ 1024 hart proposal that maintains

backwards compatibility
370d222 2018-03-05 Tim Newsome Rephrase description of hit bit.
eee5e0c 2018-03-05 Tim Newsome Clarify multiple DMs/harts
69c0d7b 2018-03-01 Tim Newsome Merge pull request #223 from riscv/auth
4d5acef 2018-02-28 Tim Newsome Clarify what happens when \Fauthenticated is clear
672d88a 2018-02-28 Tim Newsome Merge pull request #221 from riscv/readme

75

76 RISC-V External Debug Support Version 0.13-DRAFT

6a0c9ec 2018-02-27 Tim Newsome Move hit bit per review feedback.
5bd2770 2018-02-21 Tim Newsome Merge pull request #220 from omerfirmak/master
097bd8e 2018-02-21 Tim Newsome Fix link to pre-built pdf
d21774b 2018-02-21 Omer Faruk IR-

MAK
Python interpreter to be used should default to
Python2

a8c10cf 2018-02-20 Tim Newsome Incorporate review feedback.
a0f947c 2018-02-20 Tim Newsome Make trigger hit bit optional.
77e4634 2018-02-08 Tim Newsome Add hit bit to hardware triggers.
e317c15 2018-02-05 Tim Newsome Merge pull request #214 from riscv/regdeffmt order
140390a 2018-02-05 Tim Newsome Better wording.
e35b1ff 2018-02-05 Tim Newsome Move Reg Access Abbrev table after sample register
e887433 2018-02-05 Tim Newsome Use longtable instead of xtabular.
6d9bccc 2018-01-31 Tim Newsome Merge pull request #212 from riscv/abstract data
5c84437 2018-01-31 Tim Newsome Abstract Command data usage depends on the com-

mand
04a0e60 2018-01-26 Tim Newsome Merge pull request #203 from riscv/sysbusbits
d5fe487 2018-01-26 Tim Newsome Merge branch ’master’ into sysbusbits
6b54ace 2018-01-26 Tim Newsome Merge pull request #189 from riscv/hartsel
ae887cf 2018-01-26 Tim Newsome Merge branch ’master’ into hartsel
3d508ea 2018-01-25 Tim Newsome HARTSELBITS-¿HARTSELLEN and other feed-

back
eb653f7 2018-01-24 Tim Newsome Be explicit about the size of \Fhartsel.
822bd81 2018-01-24 Tim Newsome Revert incrementing version number.
4c755af 2018-01-24 Tim Newsome \Fsbbusyerror also inhibits new accesses.
457413d 2018-01-24 Tim Newsome Update how to enumerate all harts.
2180801 2018-01-18 Tim Newsome Fix ambiguity in busy error reporting.
3140efa 2018-01-09 Tim Newsome Re-apply e698a5001aa4583d31dde484d78f4f10e4e3148f

. No need to list out all the consecutive registers.
390daa7 2018-01-18 mwachs5 sbaddress: Only writes to address will actually cause

an error. Reads while busy are permitted.
5c820f3 2018-01-18 Megan Wachs Remove reference to ”caches”
4533648 2018-01-18 Megan Wachs correct access spelling
be4eaa3 2018-01-18 mwachs5 Merge remote-tracking branch ’origin/master’ into

HEAD
d37c1ac 2018-01-16 Tim Newsome Fix table column overruns by going full manual
e9100ea 2018-01-16 Tim Newsome Correct when sbbusy error is set for being busy.
c029cc7 2018-01-16 Tim Newsome Complete partial sentence.
494338a 2018-01-15 Tim Newsome Add clarifications about error handling.
e14c34e 2018-01-15 Tim Newsome Incorporate review feedback.
728fe63 2018-01-15 Tim Newsome Merge pull request #209 from riscv/trig h
68720e5 2018-01-15 Tim Newsome Remove H bits from triggers.
b8eb62a 2018-01-15 Tim Newsome Clarify when sbaccess is checked for validity
8b50d29 2018-01-12 Tim Newsome Add \Fsbbusy, to avoid race clearing \Fsberror
50b1b41 2018-01-12 Tim Newsome Clarify: writes to \Rsbdata0 write the new data
7f26759 2018-01-12 Tim Newsome Clarify exactly which bits are used for SB access.
47a019c 2018-01-11 Tim Newsome Fix typo.
13fba06 2018-01-11 Tim Newsome Merge pull request #184 from riscv/no dmerr
a49d6ad 2018-01-11 Tim Newsome sbreadonaddr is R/W

RISC-V External Debug Support Version 0.13-DRAFT 77

42195c2 2018-01-11 Tim Newsome Fix cut-and-paste error.
6c95235 2018-01-11 Tim Newsome Add sbaddress3, for future proofing.
e3345ea 2018-01-11 Tim Newsome Incorporate review feedback.
6da48f8 2018-01-11 Tim Newsome Remove dmerr.
5fd10b7 2018-01-10 Megan Wachs Merge pull request #204 from riscv/dret
3951f5c 2018-01-10 Tim Newsome Merge pull request #207 from riscv/all dm regs
e99c092 2018-01-10 Tim Newsome Add system bus version field.
a6aa531 2018-01-10 Tim Newsome Talk about all data and progbuf regs in first reg
8bfb019 2018-01-09 mwachs5 Merge remote-tracking branch ’origin/master’ into

dret
af272db 2018-01-09 Megan Wachs Update dret font
3d579d8 2018-01-09 Tim Newsome Explicitly list data[1-10] and progbuf[1-15]
c6481ae 2018-01-09 Tim Newsome Revert ”Explicitly list data[1-10] and progbuf[1-15]”
e698a50 2018-01-09 Tim Newsome Explicitly list data[1-10] and progbuf[1-15]
2f3e969 2018-01-09 Tim Newsome Merge pull request #206 from riscv/translate
e547ed5 2018-01-09 Tim Newsome Clarify that we deal in physical addresses only.
0d5b3ad 2018-01-09 Tim Newsome Merge pull request #205 from riscv/datasize
b377b89 2018-01-09 Tim Newsome Revert ”Clarify that we deal in physical addresses

only.”
f7da066 2018-01-09 Tim Newsome Clarify that we deal in physical addresses only.
99a1599 2018-01-09 Tim Newsome Clarify that \Fdatasize contains at most 12.
ae6e88a 2018-01-09 mwachs5 dret: Legal only in Debug Mode
18f392d 2017-11-24 Tim Newsome Get rid of sbsingleread in favor of sbreadonaddr
ffa998a 2018-01-05 Megan Wachs Merge pull request #201 from riscv/no clobbered
5754a3b 2018-01-05 Megan Wachs Use a different word than ”clobbered”
49299d0 2018-01-04 Megan Wachs Merge pull request #197 from riscv/ab-

stract auto tos
744c56d 2018-01-04 Megan Wachs Merge pull request #195 from riscv/haltsum-

plurality
aca7e0b 2018-01-03 Megan Wachs Add missing ”to”s to abstractauto description
d59ddf3 2018-01-03 Megan Wachs Correct plurality of halted harts in haltsum
85b4313 2017-12-22 Tim Newsome Merge pull request #191 from riscv/define parens
57c53ed 2017-12-22 Tim Newsome Put parens around all macros that need it.
7ded846 2017-12-18 Tim Newsome Refer to existing hart instead of ”valid”
68b8ac8 2017-12-15 Tim Newsome Make \Fhaltsel WARL.
6a72f45 2017-12-18 Tim Newsome Mark this as a draft, which it is.
dd8d871 2017-12-18 Tim Newsome Properly deal with \ chars in the changelog.
42f920c 2017-12-18 Tim Newsome Deal with \ chars in the changelog.
b13891c 2017-12-15 Tim Newsome Revert ”Make \Fhaltsel WARL.”
26d76a0 2017-12-15 Tim Newsome Make \Fhaltsel WARL.
f7f3277 2017-11-28 Megan Wachs Merge pull request #183 from riscv/c ebreak
afda8d7 2017-11-28 mwachs5 update PDF
134d310 2017-11-28 Megan Wachs Correct compressed version of ebreak
6c7d031 2017-11-27 Megan Wachs Merge pull request #179 from riscv/step corners
caa1258 2017-11-27 Megan Wachs badaddr -¿ tval (Priv Spec 1.9 -¿ 1.9.1)
32b0f08 2017-11-22 Tim Newsome Incorporate feedback.
2f7aa54 2017-11-22 Tim Newsome Simplify, and explain trigger behavior.
3e5887f 2017-11-21 Tim Newsome Clarify some single step corner cases.

78 RISC-V External Debug Support Version 0.13-DRAFT

f4b9ae2 2017-11-21 Tim Newsome Make ackhavereset write-only. (#178)
efe3dc8 2017-11-21 Tim Newsome Make hartreset R/W (#177)
ce1b359 2017-11-17 Megan Wachs Reset clarifications (#172)
f49bf1d 2017-11-16 Tim Newsome Merge pull request #174 from riscv/context
bac9a94 2017-11-16 mwachs5 Merge remote-tracking branch ’origin/0.13’ into con-

text
852a70d 2017-11-16 Megan Wachs icount: remove warning (#173)
363348f 2017-11-16 Tim Newsome Explain cache coherency wrt to system bus access

(#171)
26ea898 2017-11-15 Tim Newsome Refer to ISA and priv docs.
e803d67 2017-11-03 Tim Newsome Merge pull request #170 from riscv/index
ffc8c62 2017-11-03 Tim Newsome Mention the index in ”about this doc”
a4257ef 2017-11-02 Tim Newsome Add an index to the document.
f5f45a5 2017-10-30 Megan Wachs Add ’has reset’ status and control (#168)
e87fd2d 2017-10-26 Tim Newsome Merge pull request #158 from riscv/bits not signals
dfe6a49 2017-10-25 Megan Wachs Merge branch ’0.13’ into bits not signals
46f3f54 2017-10-25 Tim Newsome Incorporate review feedback.
104247f 2017-10-24 Megan Wachs Update README.md
6dd5c80 2017-10-24 Megan Wachs Update README.md
cb1a847 2017-10-24 Megan Wachs Add a note to the README about the built PDF
9e1fe79 2017-10-19 Tim Newsome Merge pull request #167 from riscv/include pdf
e00625f 2017-10-18 Tim Newsome Include pdf.
3ea45f1 2017-10-18 Megan Wachs Merge branch ’0.13’ into bits not signals
c23e729 2017-10-18 Tim Newsome Clarify more.
6cab794 2017-10-12 Tim Newsome Merge pull request #162 from riscv/impebreak
ecdaf0a 2017-10-11 Megan Wachs Merge branch ’0.13’ into impebreak
83f9faf 2017-10-11 Tim Newsome Clarify what \Fimpebreak does.
58fdc0e 2017-10-11 Megan Wachs Merge pull request #164 from riscv/legend on fig
5f3933f 2017-10-11 Tim Newsome Merge branch ’impebreak’ of github.com:riscv/riscv-

debug-spec into impebreak
78082b5 2017-10-11 Tim Newsome Mention \Fimpebreak in Program Buffer description.
0378324 2017-10-11 mwachs5 Add legend and update some transitions on the Ab-

stract Command State Machine diagram
a418a25 2017-10-11 Megan Wachs Merge branch ’0.13’ into impebreak
d1c895a 2017-10-11 Megan Wachs Merge pull request #161 from riscv/no h mode fig
f9981e8 2017-10-11 Megan Wachs Merge branch ’0.13’ into no h mode fig
ae30fc1 2017-10-11 Megan Wachs Merge pull request #163 from riscv/fix build
fa2b600 2017-10-11 Megan Wachs add missing period
0610630 2017-10-11 Megan Wachs Just do simple hmode -¿ dmode replacement
16e11f3 2017-10-11 Tim Newsome Remove hmode reference, to fix build.
84b9a6a 2017-10-11 Tim Newsome Add \Fimpebreak, to support of implicit ebreak.
cc90b77 2017-10-11 mwachs5 Remove reference to ’H’ mode from the figure
cc6a9de 2017-10-11 Megan Wachs Change old reference to ’hmode’ to ’dmode’
4a9e017 2017-10-10 Tim Newsome Merge branch ’bits not signals’ of

github.com:riscv/riscv-debug-spec into
bits not signals

ea2877d 2017-10-10 Tim Newsome Move how-to-debug into the relevant section.
d7b9f4c 2017-10-06 Megan Wachs Merge branch ’0.13’ into bits not signals

RISC-V External Debug Support Version 0.13-DRAFT 79

48f437b 2017-10-06 Megan Wachs Merge pull request #159 from riscv/unsup-
ported access size

24f0494 2017-10-06 Tim Newsome Merge branch ’0.13’ into unsupported access size
812686d 2017-10-06 Tim Newsome Merge pull request #157 from riscv/reset
486ecc6 2017-10-05 Tim Newsome Refuse unsupported bus accesses.
6ca221d 2017-10-05 Tim Newsome haltreq, resumereq, hartreset are per-hart bits
c9cdf9e 2017-10-05 Tim Newsome Merge branch ’0.13’ into reset
2be57af 2017-10-04 Tim Newsome Merge pull request #128 from riscv/connector
d16b390 2017-10-04 Tim Newsome Merge branch ’0.13’ into connector
d4118ab 2017-09-30 Tim Newsome ndmreset can’t reset logic required to access DM.
d569387 2017-09-29 Tim Newsome Merge pull request #154 from riscv/nikhil
2a47bd1 2017-09-29 Tim Newsome Merge branch ’0.13’ into nikhil
6269d9d 2017-09-29 Tim Newsome Merge pull request #132 from riscv/progbufsize
c6bd8d1 2017-09-29 Tim Newsome and -¿ or
58c2441 2017-09-29 Tim Newsome Mention \Fstepie in Single Step
94c5f78 2017-09-29 Tim Newsome Clarify ndmreset.
12810b4 2017-09-29 Tim Newsome Clarify that sbaddress is physical.
5862fdf 2017-09-29 Tim Newsome Unify M mode and mprv comment.
aea1bd5 2017-09-29 Tim Newsome Define behavior when haltreq and resumereq are set
fe76d39 2017-09-28 Megan Wachs Merge branch ’0.13’ into progbufsize
146b348 2017-09-28 Megan Wachs remove superflous ’an’
a5d16c4 2017-09-28 Megan Wachs remove superfluous ’a’
052a8ab 2017-09-28 Tim Newsome Clarify that a debugger can lose hart control.
cc52cff 2017-09-28 Tim Newsome Add \Fdmerr.
25685eb 2017-09-28 Tim Newsome Explain that bus master or progbuf is required.
f75ee7d 2017-09-28 Tim Newsome Clarify debugger can discover ”almost” everything
71e6788 2017-09-27 Tim Newsome Remove description of manual stepping.
9aea347 2017-09-27 Tim Newsome Move Running/Single Step near Halting.
2090d9b 2017-09-27 Tim Newsome data0 should be sbdata0 in this table.
5858cfe 2017-09-27 Tim Newsome Clarify why \Rpriv exists.
bc3c2aa 2017-09-27 Tim Newsome Mention where priv encoding comes from.
ef77cc4 2017-09-27 Tim Newsome One more attempt to clarify DPC after single step.
80a288e 2017-09-27 Tim Newsome Clarify instret not incrementing on ebreak.
4359b78 2017-09-27 Tim Newsome Merge pull request #152 from riscv/nikhil
c163d22 2017-09-20 Tim Newsome Remove ebreakh.
9971075 2017-09-20 Tim Newsome Clarify we’re talking about privilege
3fbe495 2017-09-20 Tim Newsome Clarify that we’re talking about *implementation*
3684854 2017-09-20 Tim Newsome Use steps environment in sbdata0.
d4eda18 2017-09-20 Tim Newsome Explain that only sbdata0 has side effects.
ae781c6 2017-09-20 Tim Newsome Don’t refer to internal system bus registers.
875922e 2017-09-20 Tim Newsome Explain sbdata0 being stale a bit more.
cd44fd5 2017-09-20 Tim Newsome Clarify autoread
194484b 2017-09-20 Tim Newsome Clarify hawindow.
02f1aac 2017-09-20 Tim Newsome Clarify that \Fdataaddr is relative to \Rzero.
0e9b6ae 2017-09-20 Tim Newsome Clarify nonexistent vs unavailable.
b55ff41 2017-09-20 Tim Newsome Fix devtreevalid.
4325ef8 2017-09-20 Megan Wachs Merge branch ’0.13’ into progbufsize
2eccb86 2017-09-20 Tim Newsome Explicitly state which registers are read-only.

80 RISC-V External Debug Support Version 0.13-DRAFT

4af505c 2017-09-20 Tim Newsome Show section numbers for registers.
cbd5573 2017-09-20 Tim Newsome Thank Nikhil
19c206f 2017-09-20 Tim Newsome Clarify how to determine whether progbuf is RAM
0651f7d 2017-09-20 Tim Newsome Explain what happens if ebreak is missing.
e889dae 2017-09-20 Tim Newsome Move figure of states into its own section.
cff7b80 2017-09-20 Tim Newsome Explain when \Ftransfer might be used.
6b2ee61 2017-09-20 Tim Newsome Explain where \Fsize encoding came from.
900d8ab 2017-09-20 Tim Newsome Merge pull request #145 from riscv/nikhil
c9f3b73 2017-09-14 Tim Newsome Fix typo.
4b25400 2017-09-13 Tim Newsome Mention dpc in CSRs abstract register numbers.
c3ee426 2017-09-13 Tim Newsome Move abstract regno table closer to its reference.
111b9a3 2017-09-13 Tim Newsome cycle -¿ operation
994afdc 2017-09-13 Tim Newsome Account for multiple selected harts.
aa4a297 2017-09-13 Tim Newsome Halt Control -¿ Run Control
e97c821 2017-09-13 Tim Newsome continuous -¿ contiguous
97f73ff 2017-09-13 Tim Newsome Clarify ndmreset behavior.
6078220 2017-09-13 Tim Newsome Explain ndmreset
a3d4f30 2017-09-13 Tim Newsome Describe ‘halt region‘
272b3d9 2017-09-13 Tim Newsome Clarify accessing unimplemented DM DMI regs
3e91f1b 2017-09-13 Tim Newsome Clarify either Prog Buf or Sys Bus Acc is required
e8a6145 2017-09-13 Tim Newsome Clarify CSR access; remove serial port
ce20766 2017-09-13 Tim Newsome Remove section referencing itself.
1195a61 2017-09-18 Tim Newsome Generate constants to be unsigned for clang.
ba200ab 2017-08-18 Megan Wachs Merge branch ’0.13’ into progbufsize
8967b0a 2017-08-16 Megan Wachs Compressed instructions are c.foo, not foo.c
b5698a9 2017-08-16 Megan Wachs clarify progbufsize description
d221bab 2017-08-16 Megan Wachs Remove progbufsize enums from register description
d232d64 2017-08-16 Megan Wachs Merge pull request #134 from riscv/sw-examples-

cleanup
0498102 2017-08-16 Megan Wachs appendix: Use standard assembly format for sw
6e20373 2017-08-15 Megan Wachs Merge pull request #131 from riscv/devtree
50ea40c 2017-08-15 Megan Wachs Merge branch ’0.13’ into devtree
4e51a25 2017-08-10 Tim Newsome Merge pull request #130 from riscv/trigsign
4456d99 2017-08-09 Tim Newsome Rename progsize to progbufsize.
55d5b66 2017-08-09 Tim Newsome Clarify that trigger comparisons are unsigned.
21e35ef 2017-08-09 Tim Newsome Configuration String -¿ Device Tree
dc52f28 2017-08-03 Megan Wachs Merge pull request #127 from riscv/cmdtype
f044f45 2017-08-02 Tim Newsome Don’t require a target to provide 25mA on VCC.
c883943 2017-08-02 Tim Newsome Add table of Abstract Command Types
d6b8148 2017-08-02 Tim Newsome Merge pull request #123 from riscv/lists
71f5cb2 2017-08-02 Tim Newsome Merge branch ’0.13’ into lists
b83af70 2017-08-02 Megan Wachs Merge pull request #125 from riscv/no dmi error
2a41bd8 2017-08-02 Megan Wachs Merge branch ’0.13’ into no dmi error
9c73ce8 2017-08-02 Megan Wachs Merge pull request #111 from riscv/dpc
a814400 2017-08-02 Tim Newsome Merge branch ’0.13’ into dpc
8bdc5cd 2017-08-02 Tim Newsome Merge pull request #126 from riscv/build
985a3df 2017-08-02 Tim Newsome Fix and speed up build.

RISC-V External Debug Support Version 0.13-DRAFT 81

95b9108 2017-08-02 mwachs5 DTM: Clarify that there are no cases when DMI
would actually return an error.

9c9e0c0 2017-08-02 mwachs5 SystemBus: No longer returns error. So DMI has no
’error’ return code.

ae1e9e4 2017-07-28 Tim Newsome Merge branch ’0.13’ into dpc
5ba18f9 2017-07-27 Tim Newsome Fix more typos.
c6fef98 2017-07-26 Tim Newsome Merge pull request #122 from riscv/version
dbc65bf 2017-07-26 Tim Newsome Fix typos.
bba0ad9 2017-07-26 Tim Newsome Tighten up introduction lists.
e22d5eb 2017-07-26 Tim Newsome Add version constants for ”not compatible”.
c79038e 2017-07-26 Tim Newsome Small clarification.
9df0411 2017-07-21 Tim Newsome Incorporate review feedback.
d67419c 2017-07-21 Tim Newsome Clarify dpc contents.
c562898 2017-07-11 Tim Newsome Merge pull request #109 from riscv/ll
498cdf4 2017-07-11 Megan Wachs Merge branch ’0.13’ into ll
0e707f1 2017-07-11 Megan Wachs Merge pull request #105 from

riscv/quick access errors
2d34f65 2017-07-11 Tim Newsome Merge branch ’0.13’ into ll
a56831c 2017-07-11 Megan Wachs Merge branch ’0.13’ into quick access errors
65d596e 2017-07-11 Megan Wachs Merge pull request #106 from riscv/er-

ror halt resume
9f50c05 2017-07-11 Tim Newsome Use LL instead of L for 64-bit constant suffix.
23fd24a 2017-07-10 Megan Wachs Cleaning up whitespaces
102ba67 2017-07-10 Megan Wachs Merge branch ’0.13’ into error halt resume
1720505 2017-07-10 Megan Wachs Merge pull request #107 from riscv/csr individuality
d67f6ef 2017-07-10 Megan Wachs Merge branch ’0.13’ into csr individuality
c1e61b0 2017-07-10 Megan Wachs Merge pull request #108 from riscv/dcsr causes
c5ab04c 2017-07-10 Megan Wachs Update abstract commands.xml
6e8cdf1 2017-07-10 Megan Wachs Update abstract commands.xml
cf6e3f2 2017-07-10 Megan Wachs clarify DCSR.cause
79ffbb9 2017-07-10 Megan Wachs Clarify implications of CSR read, write, halt
013e191 2017-07-10 Megan Wachs Clarify when you would get error halt/resume
231e457 2017-07-10 Megan Wachs Quick Access error clarification
7c760b0 2017-07-03 Megan Wachs Merge pull request #104 from riscv/se-

rial to appendix
c54c2f2 2017-07-03 mwachs5 serial: add the XML file, not the TEX file
ac77477 2017-07-03 mwachs5 serial: Fix compile errors after moving serial port to

appendix
6defcb8 2017-07-03 mwachs5 serial: Move serial ports out of main spec and into

Future Work appendix
3541152 2017-07-03 Megan Wachs Merge pull request #102 from riscv/remove trace
a28f639 2017-06-30 mwachs5 remove trace dependencies from Makefile
52a122b 2017-06-30 mwachs5 remove trace section
d9e166b 2017-06-30 mwachs5 remove trace registers
7caf4e5 2017-06-30 mwachs5 remove trace appendix
aff0c16 2017-06-30 Megan Wachs Merge pull request #82 from riscv/intdisable
4688988 2017-06-29 mwachs5 DCSR: define a ’stepie’ bit which may be hard-wired

to 0.

82 RISC-V External Debug Support Version 0.13-DRAFT

443b3fe 2017-06-29 mwachs5 Merge remote-tracking branch ’origin/0.13’ into int-
disable

497ed95 2017-06-29 Megan Wachs Merge pull request #96 from riscv/j-
tagdtm non appendix

f1488c4 2017-06-29 Megan Wachs Merge branch ’0.13’ into jtagdtm non appendix
920ec9a 2017-06-13 Megan Wachs Merge pull request #95 from riscv/re-

move spontaneous
67fa7b0 2017-06-13 Megan Wachs Merge branch ’0.13’ into remove spontaneous
78eb65e 2017-06-13 Megan Wachs Merge pull request #94 from riscv/anynonexistent
d97b296 2017-06-13 Megan Wachs Merge branch ’0.13’ into anynonexistent
61c6d30 2017-06-13 Megan Wachs Merge pull request #93 from riscv/define-dret-again
389ee69 2017-06-13 Megan Wachs Merge branch ’0.13’ into define-dret-again
421dcf2 2017-06-13 Megan Wachs Merge pull request #97 from riscv/implementa-

tion deets
9a0492c 2017-06-13 Megan Wachs Add missing period and some other small text edits
13ccdbf 2017-06-13 Megan Wachs fix typo in ProgBuf register macro
b01f989 2017-06-13 mwachs5 implementations: be a bit more concrete about the

one example implementation we have.
a7b5f83 2017-06-13 mwachs5 jtagdtm: Move it out of the appendix as it is really

part of the specification
87aceb0 2017-06-13 Megan Wachs remove ”spontaneous”
50b9950 2017-06-13 Megan Wachs Forward reference for anynonexistent
adea3e2 2017-06-13 Megan Wachs More clarifications on dret
1b8dd0e 2017-06-13 Megan Wachs Define DRET instruction
b4f1f43 2017-06-08 Tim Newsome Merge pull request #79 from riscv/cleanups
09c7f6e 2017-06-08 mwachs5 Merge remote-tracking branch ’origin/0.13’ into

cleanups
617da4c 2017-06-08 Megan Wachs Update description of R/W1C
de2c56b 2017-06-08 Megan Wachs Clarify that DCSR is also not updated on ebreak
efa615d 2017-06-07 Tim Newsome Increase xdebugver field size to 4 bits. (#92)
a0e147a 2017-06-07 Tim Newsome Address some review comments.
c1b3e54 2017-06-07 Megan Wachs Merge pull request #91 from riscv/ndmreset
5c7c1bb 2017-06-07 Tim Newsome Merge branch ’0.13’ into cleanups
72bb874 2017-06-06 Megan Wachs Merge branch ’0.13’ into ndmreset
1fbbe6e 2017-06-06 Megan Wachs Merge pull request #90 from riscv/dpc clarifications
89ffe50 2017-06-06 mwachs5 NDMRESET: Clarify what it may and may not do
1932da0 2017-06-06 mwachs5 DPC: Clarifications on its meaning
03bcafe 2017-06-06 Megan Wachs Merge pull request #89 from riscv/datacount
6470fdb 2017-06-06 mwachs5 ABSTRACTCS: Correct inconsistency on the num-

ber of data words.
1f4a1fe 2017-06-06 Megan Wachs Merge pull request #88 from riscv/W0 corrections
3ca82b4 2017-06-06 Megan Wachs More corrections for R vs R/W1C on SERCS
9705fb8 2017-06-06 Megan Wachs Correct a bunch of W0 registers
1058690 2017-06-05 Megan Wachs Merge branch ’0.13’ into intdisable
7531c41 2017-06-05 Megan Wachs Merge pull request #80 from riscv/issue76
1347371 2017-06-05 Tim Newsome Add intdisable to dcsr.
850bd87 2017-06-05 Megan Wachs Merge branch ’0.13’ into issue76
43307eb 2017-06-05 Megan Wachs Merge pull request #81 from riscv/issue63

RISC-V External Debug Support Version 0.13-DRAFT 83

989c60d 2017-06-05 Tim Newsome Fix language. We can only halt harts, not cores.
517a08b 2017-06-05 Tim Newsome Incorporate review feedback.
802be28 2017-06-05 Tim Newsome Clarify/fix Quick Access example.
dbcaec8 2017-06-02 Tim Newsome Merge branch ’0.13’ into cleanups
b8cc523 2017-06-02 Tim Newsome Add included tex files as dependencies. (#78)
d0a5959 2017-06-02 Tim Newsome Merge pull request #77 from riscv/pageno
15f864a 2017-06-01 Tim Newsome Language cleanups, consistency and typo fixes.
4ecae86 2017-06-01 Tim Newsome Add page numbers to list-of-register tables.
59b3e4a 2017-05-19 Megan Wachs Setting up a Travis regression to check for build errors

(#72)
124bf44 2017-05-17 mwachs5 Debug Module: CMDERR is Write-1-to clear, not

R/W0
bb6c7f0 2017-05-17 mwachs5 SW Registers file should be XML, not TEX
d360358 2017-05-10 Megan Wachs

(Temporary
Acct.)

Remove virtual register from core registers.xml

bfc64fb 2017-05-10 Megan Wachs
(Temporary
Acct.)

Add missing sw registers.tex file

0512f5d 2017-05-06 mwachs5 Move virtual ’prv’ register to a seperate section to
make it more clear it is not a real register.

6b3c9d7 2017-05-06 mwachs5 Clarify haltreq/resumereq/resumack
0a487eb 2017-04-26 mwachs5 jtag: Change specified JTAG pinout from Coretex to

AVR, to provide for TRSTn option.
93cdfaf 2017-04-26 mwachs5 DM : Clarify that DATA/PROGBUF can’t be writ-

ten while busy.
ef98f23 2017-04-19 mwachs5 jtag: Make it clear that a NOP is really a NOP.
a6f8efa 2017-04-17 mwachs5 single step: Exceptions count as the ’step’ comple-

tion.
bf11e9e 2017-04-17 mwachs5 resumeack: fix some LaTeX cross references
4afa081 2017-04-11 mwachs5 halt/resumereq: Clarify what setting them to 0 or 1

does
297a39b 2017-04-06 mwachs5 fix chisel build
082c499 2017-04-06 mwachs5 Rename resumed to resumeack, and add more text

about what these bits mean.
909d617 2017-04-06 mwachs5 Correct some cross references after removing all the

multiply listed registers
dd09914 2017-04-06 mwachs5 Add ’resumedall’ and ’resumedany’ bits to avoid race

condition on about to resume and just halted
feb88fc 2017-04-05 mwachs5 JTAG DTM: Clarify that leading bits are 0 for more

than 5-bit IR
75b96ea 2017-04-04 mwachs5 use renamed dm registers file
9f3ec7e 2017-04-04 mwachs5 debugger implementation: remove some old TODO

and commentary.
45dd5b5 2017-04-04 mwachs5 Don’t list out every single DM register for those that

are just indexed versions
b8b3aa2 2017-04-04 mwachs5 remove core-side register definitions from Debug

Module. Rename dm1 to dm

84 RISC-V External Debug Support Version 0.13-DRAFT

d979a13 2017-04-04 mwachs5 remove core-side serial port specification, as these
should look like implementation-specific devices with
appropriate drivers.

b56870b 2017-04-04 mwachs5 Remove the wording about ’debug exception’, as it is
called breakpoint exception in the RISC-V Spec.

1e9347d 2017-04-03 mwachs5 Add description of hasel
0dda84d 2017-04-03 mwachs5 JTAG DTM: Clean up TAP register descriptions
82ccde5 2017-04-03 mwachs5 JTAG DTM: Add a hard DMI bit which cancels the

outstanding DMI transaction
bd2a3d1 2017-04-03 mwachs5 remove preexec
02c733a 2017-04-03 mwachs5 remove preexec from Abstract State diagram.
1e271d6 2017-04-03 mwachs5 Update Debugger implementation for DMI register

access, and fix tex compile issues.
155dda4 2017-04-03 mwachs5 Rewrite HW Implementation examples to describe a

pure abstract command approach, and to not rely
on harts executing every instruciton which is fetched
from the Debug Module

556c2be 2017-04-03 mwachs5 minor wording edits about RISC-V core registers
523c64a 2017-04-03 mwachs5 Edits to the Debug Module section.
b9a371f 2017-04-03 mwachs5 add missing trace.tex file.
58b2396 2017-04-03 mwachs5 Re-order the JTAG DTM Sections
a8827e2 2017-04-03 mwachs5 Edits to the System Overview.
c5417ce 2017-04-03 mwachs5 add more sections as seperate files.
287d5c6 2017-04-03 mwachs5 moving more files to seperate tex files.
9e873f4 2017-04-03 mwachs5 move trigger info into seperate file.
2c89a86 2017-04-03 mwachs5 move risc-v core debug info into seperate file.
e676491 2017-04-03 mwachs5 Move System Overview to seperate file
03df6ee 2017-04-03 mwachs5 Move Debug Module description to a seperate file.
5faa430 2017-04-03 mwachs5 add back in JTAG DTM in appendix
7b28b11 2017-04-03 mwachs5 Move jtag DTM to appendix. Move some text to

commentary.
cc183ba 2017-04-03 mwachs5 move introduction to a seperate file. Comment out

reading order.
2c83830 2017-04-03 mwachs5 Merge remote-tracking branch ’origin/0.13’ into 0.13
e3cf6ab 2017-04-03 Megan Wachs Merge pull request #18 from riscv/intro edits
60c5a1c 2017-04-03 Megan Wachs Merge branch ’0.13’ into intro edits
f727d14 2017-04-03 mwachs5 Use Chapters vs Sections. Needs reorganization.
815951d 2017-04-03 mwachs5 Formatting updates. Make this look more like the

RISC-V specs. Need to use chapter vs. section
69ffaf8 2017-03-31 mwachs5 Move XML files into a subdirectory.
b276384 2017-03-31 mwachs5 Remove debug rom.S
112bbac 2017-03-31 mwachs5 figures: reorganize the figures into directories.
2d05746 2017-03-31 Megan Wachs Merge pull request #50 from riscv/add license
1e5c068 2017-03-27 Megan Wachs Add LICENSE
0e2d08a 2017-03-22 Megan Wachs Merge pull request #47 from poweihuang17/0.13
fc17730 2017-03-22 Po-wei Huang Change some halt mode into debug mode.
8ccf029 2017-03-22 Po-wei Huang All halt mode changed to debug mode to synchronize

with the priv spec.

RISC-V External Debug Support Version 0.13-DRAFT 85

f143d9e 2017-03-21 mwachs5 Correct duplicated progbuf register names
0797ec1 2017-03-17 mwachs5 autoexec: make autoexec bits match the number of

data words there really are.
8e76d93 2017-03-17 mwachs5 dm1 registers: move a few more things around. Re-

duce abstract data words back to 12.
f8bf292 2017-03-17 mwachs5 dm1 registers: resolve some address conflicts and in-

consistencies
a74dff9 2017-03-17 mwachs5 access register: some small bit changes
2e6b0ca 2017-03-15 mwachs5 config string: Fix LaTeX compile errors.
f83260a 2017-03-10 mwachs5 Abstract Commands: clarify that 32-bit reads should

always work. This allows reading MISA.
6f9347a 2017-03-10 mwachs5 Config String: change the Abstract Command to

DMI registers. Allow the same registers to be used
for unspecified identifier information.

4ea10ff 2017-03-10 mwachs5 abstract: Make autoexec apply to all data and prog-
buf words. Make a seperate register which is optional.

5008436 2017-03-10 mwachs5 abstract: Allow up to 16 progbuf and/or data words.
Inform debugger about dscratch registers available
for its use.

aaa13e5 2017-03-06 mwachs5 Command: use the name ’cmdtype’ not ’type’ to al-
low easier auto-generation of Scala code.

e9bb72c 2017-03-06 mwachs5 Hart Array: Add registers for hart array.
5d17a35 2017-03-06 mwachs5 DM: Move addresses around for better seperation of

functionalities in HW
25ccaa8 2017-03-06 mwachs5 CONTROL: Rename control and status registers to

CS for consistency and to accurately reflect their
functionality.

45cf6c2 2017-03-06 mwachs5 Errors: fix up the bit assignments in SERSTATUS
with the addition of error bit.

38cb5a0 2017-03-06 mwachs5 Errors: Make errors write-1-to-clear.
b436d77 2017-03-03 mwachs5 triggers: Clarify that matches are against virtual ad-

dresses.
793bb85 2017-03-03 mwachs5 triggers: Add suggested timings for best user experi-

ence.
2669866 2017-03-03 mwachs5 stoptime/stopcycle: Make their functionality match

their name. Allow any reset value.
c85a1cf 2017-03-01 mwachs5 config string: Simplify the Config String Address ab-

stract command.
a303a6b 2017-03-02 Megan Wachs Update README.md
1951ae3 2017-03-01 Megan Wachs Merge pull request #35 from sifive/generate chisel
2e2dc28 2017-03-01 Megan Wachs Merge pull request #34 from sifive/serial addrs
c087c34 2017-03-01 mwachs5 Merge remote-tracking branch ’origin/0.13’ into gen-

erate chisel
92a4923 2017-03-01 mwachs5 serial: tweak addresses.
b09f460 2017-03-01 mwachs5 serial: tweak addresses.
6477837 2017-03-01 mwachs5 chisel: tweaks to class names.
be83e3e 2017-02-28 Tim Newsome Clarify stoptime, stopcycle.

86 RISC-V External Debug Support Version 0.13-DRAFT

7f94662 2017-02-27 mwachs5 Merge remote-tracking branch ’origin/0.13’ into gen-
erate chisel

c17c17c 2017-02-27 Tim Newsome Abstract command that returns config string addr.
096dfbc 2017-02-27 Tim Newsome Acknowledge Alex.
c0253ab 2017-02-24 Tim Newsome Explain tdata1 type a bit more.
e43ac2e 2017-02-24 Tim Newsome Clarify how to enumerate triggers again.
c6e3e20 2017-02-23 Tim Newsome Revert previous commit.
ef770bf 2017-02-23 Tim Newsome mcontrol and icount mask tdata2, not tdata1.
27806f2 2017-02-23 mwachs5 rename ’type’ to ’cmdtype’ purely so my auto-

generation scripts work.
e46798d 2017-02-22 mwachs5 Add Abstract Commands to automatic chisel
b3bb939 2017-02-21 mwachs5 Generate Chisel headers as well for Debug Module.
3d5b6f6 2017-02-22 Tim Newsome Merge pull request #31 from sifive/ab-

stract command types
c9db98c 2017-02-22 Tim Newsome Simplify description of op statuses.
bda39cc 2017-02-22 mwachs5 Add explicit type field to Abstract Command.
34ff1d8 2017-02-22 Tim Newsome Merge pull request #30 from sifive/-

more ibuf progbuf
f83a1ca 2017-02-22 mwachs5 Finish up replacement of ibuf-¿progbuf
ddde0a2 2017-02-22 Tim Newsome Merge pull request #28 from

sifive/inst supply vs progbuf
9666e51 2017-02-22 mwachs5 IBUF-¿PROGBUF
5308ecd 2017-02-22 mwachs5 Remove last references to ”Instruction Supply”
f6ebde9 2017-02-22 Tim Newsome Move authentication to a serial protocol.
0f079c8 2017-02-22 Tim Newsome Reserve bit for per-hart reset.
f2c93ac 2017-02-22 Tim Newsome Clarify that dmactive resets authentication.
59154ac 2017-02-22 Tim Newsome Merge pull request #27 from asb/clarify reset
f5e7b1c 2017-02-22 Alex Bradbury Clarify that the halt state of all harts is maintained

through reset
3dfe8fd 2017-02-22 Tim Newsome More Debug Mode -¿ Halt Mode.
d29fc1f 2017-02-22 Tim Newsome Debug Mode -¿ Halt Mode
55d6030 2017-02-21 Tim Newsome Generate debug defines.h as part of normal make
b0e6a7f 2017-02-21 Tim Newsome Minor clarifications.
0f9885c 2017-02-20 Tim Newsome Various clarifications.
e443ab9 2017-02-15 Tim Newsome Merge pull request #25 from sifive/ctrl status
3b08e90 2017-02-15 Tim Newsome Merge pull request #24 from

sifive/sm diagram resumereq
0802d5a 2017-02-15 mwachs5 Use consistent ’Control and Status’ naming for CS

registers.
5accc7d 2017-02-15 Tim Newsome Change all the ”other” JTAG IRs to just reserved.
bcbd7da 2017-02-15 mwachs5 sm diagram: Show using resumereq bit to resume.
18f6e55 2017-02-14 Tim Newsome Introduce resumereq command, similar to haltreq.
fb40538 2017-02-14 Tim Newsome Merge pull request #22 from sifive/sb errors
4b62c40 2017-02-14 mwachs5 SystemBus: Clean up some formatting and error

specification notes.
0f346e4 2017-02-14 Tim Newsome Merge pull request #21 from

sifive/sm for quick access
bc97723 2017-02-14 mwachs5 quick-access: Update SM Diagram for Quick Access

RISC-V External Debug Support Version 0.13-DRAFT 87

d27066e 2017-02-14 Tim Newsome Clarify haltreq bit.
6f8ec43 2017-02-14 Tim Newsome Always generate long constants when required.
c6ac6bc 2017-02-13 Tim Newsome Include field descriptions in C header file.
b849213 2017-02-13 Tim Newsome Fix the build.
c82c62e 2017-02-12 Tim Newsome Merge pull request #20 from sifive/jtag ir minimum
1cf8033 2017-02-12 mwachs5 jtag: More clarifications
6203bd6 2017-02-12 Megan Wachs Update requirements– W GPRs Required
f2b43a7 2017-02-12 Megan Wachs Remove double ’the’
2c64ef1 2017-02-12 Megan Wachs Remove comma
f84abce 2017-02-12 Megan Wachs Whitespace edits and address come comments
7246b44 2017-02-12 Tim Newsome Merge pull request #19 from sifive/jtag dtm edits
23c2648 2017-02-11 mwachs5 jtag dtm: ask for clarification on TAP sharing.
7020d23 2017-02-11 mwachs5 jtag dtm: Clarifications, DBUS-¿DMI
292d49c 2017-02-11 Megan Wachs fix indentation
55ef8d6 2017-02-11 Tim Newsome Merge pull request #17 from sifive/prog buffer size
b879b86 2017-02-11 Megan Wachs Add missing period
bbe0521 2017-02-11 mwachs5 Make comments on program buffer size match the

address map.
4ceaa37 2017-02-11 mwachs5 Flesh out and edit the introduction/background Add

a description of use cases this spec has in mind, and
what it doesn’t cover.

cbf89d6 2017-02-11 Tim Newsome Rewrite Quick Access.
9115db1 2017-02-10 Tim Newsome Merge pull request #16 from sifive/re-

duce prog buffer size
170bff1 2017-02-10 Megan Wachs Allow size 4 for the program buffer
9d46077 2017-02-10 Tim Newsome Merge pull request #15 from sifive/dmactive
c911e6e 2017-02-10 Tim Newsome Clarify use of dmactive.
2ca296f 2017-02-09 Tim Newsome Reserve command register space for custom use.
e49666e 2017-02-09 Tim Newsome Clarify hart index change per Megan’s comments.
84865e9 2017-02-09 Tim Newsome Add header prefix for abstract commands.
2434f4f 2017-02-09 Tim Newsome Select harts by index instead of hart ID.
7bf112a 2017-02-09 Tim Newsome Generate correct headers for ¿32-bit registers.
7f0f09a 2017-02-08 Tim Newsome Reset dbus status to ”failure” to avoid confusion.
7b1803e 2017-02-08 Tim Newsome Merge pull request #13 from sifive/arg0 clarification
8b1c6f0 2017-02-08 Megan Wachs Fix line wrap issue
345c33f 2017-02-08 Megan Wachs Call out ”arg0” specifically.
9f080f5 2017-02-08 Megan Wachs Clarify ”arguments” to commands
259badd 2017-02-08 Tim Newsome Make haltsum/halt registers mandatory.
eb0f1d3 2017-02-07 Tim Newsome Allow for early abstract command failures.
bb49bd1 2017-02-07 Tim Newsome Clarify error handling a little.
3fc0a97 2017-02-07 Tim Newsome Explain when abstract data regs may be clobbered.
c37167e 2017-02-07 Tim Newsome Fix old language in description of halt registers.
6943c96 2017-02-07 Tim Newsome Generate more useful C header files from reg defs
d7a8045 2017-02-06 Tim Newsome Merge pull request #11 from sifive/sm diagram
8bef40e 2017-02-05 mwachs5 Merge remote-tracking branch ’origin/0.13’ into

sm diagram
98639df 2017-02-05 mwachs5 Include the SM Diagram as a figure. Also some minor

capitalization fixes.

88 RISC-V External Debug Support Version 0.13-DRAFT

a95e4c3 2017-02-05 mwachs5 Update State Machine diagram to show uncertainty
of halt bit during auto halt/resume.

ba76744 2017-02-05 Tim Newsome Combine loabits and hiabits.
02b1d92 2017-02-05 Tim Newsome DMI can get away with just 6 address bits.
35d6e33 2017-02-05 mwachs5 Update State machine diagram to show BUSY with-

out HALTED
f511b05 2017-02-04 Tim Newsome Clarify command busy bit.
a8e5ae7 2017-02-03 mwachs5 Merge remote-tracking branch ’origin/0.13’ into

sm diagram
d0f8961 2017-02-03 mwachs5 Update figures
e18a68d 2017-02-03 Tim Newsome Clarify prehalt/postresume failure.
ac3e2a9 2017-02-02 Tim Newsome Clarify abstract command failure behavior.
ce4baee 2017-02-02 Tim Newsome Add Quick Access section.
0490377 2017-02-02 Tim Newsome Add prehalt and postresume to reg command.
67515bd 2017-02-02 Tim Newsome Deal with a few minor TODOs.
96456fc 2017-02-02 Tim Newsome Turn register names into links.
317cd98 2017-02-02 Tim Newsome Explain what register access is required.
f3ad2f2 2017-02-01 Tim Newsome Revert Plain Exception implementation to be simple
a0ad281 2017-02-01 Tim Newsome execb -¿ preexec, execa -¿ postexec
1d4a2c3 2017-02-01 Tim Newsome Limit Program Buffer sizes to 0, 1, 8.
cc40815 2017-02-01 Tim Newsome Incorporate Po-wei’s feedback.
c8b45d6 2017-02-01 Tim Newsome Clarify how all autoexec bits work.
dbb1deb 2017-02-01 Tim Newsome Remove stale TODO.
c5f8f59 2017-02-01 Tim Newsome Explain why cmderr inhibits starting new commands.
5c69194 2017-02-01 Tim Newsome Fix editing error.
50f7c48 2017-02-01 Tim Newsome Remove empty hart info register.
781c68e 2017-02-01 Megan Wachs Update README.md
f46b32e 2017-02-01 mwachs5 Add a diagram of Abstract Command flow.
633bd63 2017-02-01 Tim Newsome Move Reading Order into About This Document
51ec4d1 2017-02-01 Tim Newsome Add reading order section.
03d20ad 2017-02-01 Tim Newsome autoexec0 applies to data0, not inst0.
c302353 2017-01-31 Tim Newsome Don’t rely on hart fetching instructions once.
2558c25 2017-01-31 Tim Newsome Change how exceptions in Halt Mode are handled.
a36ddce 2017-01-31 Tim Newsome Add size to abstract register command.
64de458 2017-01-31 Tim Newsome Detail bus master reads.
c08486f 2017-01-31 Megan Wachs reset: Add some comments (#5)
1558049 2017-01-30 Tim Newsome Automate Change Log.
51525a4 2017-01-29 Tim Newsome Update System Overview
7d39ac0 2017-01-29 Tim Newsome Update Supported Features.
9e7cbea 2017-01-29 Tim Newsome Update RISC-V Core section.
515188d 2017-01-29 Tim Newsome Update Hardware Implementations section.
4b19ed8 2017-01-29 mwachs5 system bus: be consistent and always call it ’System

Bus’. Even if some dislike the name, we should be
consistent and clear in the spec.

9ccef3d 2017-01-29 Tim Newsome Fleshed out some debugger implementation.
04b9176 2017-01-28 Tim Newsome Rename debug exception to breakpoint exception.
5ac4ea1 2017-01-27 Tim Newsome WIP on big update on instruction supply.
2d9c3e2 2017-01-27 Tim Newsome Reorganize dm registers.

RISC-V External Debug Support Version 0.13-DRAFT 89

de50ba8 2017-01-27 Tim Newsome Abstract command support is already addressed.
27cb0da 2017-01-26 Tim Newsome Merge pull request #4 from sifive/access renames
5085046 2017-01-26 mwachs5 Rename registers and fields like ’access’ that were

confusingly the same name.
10bbf6f 2017-01-26 Tim Newsome Fix #2: DM address space table
a05c582 2017-01-26 Tim Newsome Add debugger inspection as a feature.
4062681 2017-01-24 Tim Newsome Add publish target.
5c8bb83 2017-01-24 Tim Newsome Clarify use of data registers.
1504da6 2017-01-24 Tim Newsome Replace manual date with automatic git hash/date.
997f2a0 2017-01-23 Tim Newsome Deal with unsupported abstract commands.
cb6f2b8 2017-01-23 Tim Newsome Renumber registers to prevent duplicates.
8b4db96 2017-01-23 Tim Newsome Don’t print out addresses if they’re not provided.
b00cd21 2017-01-23 Tim Newsome Add an abstract command.
675b556 2017-01-23 Tim Newsome Reorganize DM bits into functional group regs.
5fc7512 2017-01-23 Tim Newsome Remove bits 33:32 from sbdata[23].
ceb5d66 2017-01-20 Tim Newsome Starting point for a comprehensive spec

	Preface
	Introduction
	Terminology
	Context

	About This Document
	Structure
	Register Definition Format
	Long Name (shortname, at 0x123)

	Background
	Supported Features

	System Overview
	Debug Module (DM)
	Debug Module Interface (DMI)
	Reset Control
	Selecting Harts
	Selecting a Single Hart
	Selecting Multiple Harts

	Run Control
	Abstract Commands
	Abstract Command Listing
	Access Register
	Quick Access

	Program Buffer
	Overview of States
	System Bus Access
	Quick Access
	Security
	Debug Module DMI Registers
	Debug Module Status (dmstatus, at 0x11)
	Debug Module Control (dmcontrol, at 0x10)
	Hart Info (hartinfo, at 0x12)
	Hart Array Window Select (hawindowsel, at 0x14)
	Hart Array Window (hawindow, at 0x15)
	Abstract Control and Status (abstractcs, at 0x16)
	Abstract Command (command, at 0x17)
	Abstract Command Autoexec (abstractauto, at 0x18)
	Device Tree Addr 0 (devtreeaddr0, at 0x19)
	Next Debug Module (nextdm, at 0x1d)
	Abstract Data 0 (data0, at 0x04)
	Program Buffer 0 (progbuf0, at 0x20)
	Authentication Data (authdata, at 0x30)
	Halt Summary 0 (haltsum0, at 0x40)
	Halt Summary 1 (haltsum1, at 0x13)
	Halt Summary 2 (haltsum2, at 0x34)
	Halt Summary 3 (haltsum3, at 0x35)
	System Bus Address 127:96 (sbaddress3, at 0x37)
	System Bus Access Control and Status (sbcs, at 0x38)
	System Bus Address 31:0 (sbaddress0, at 0x39)
	System Bus Address 63:32 (sbaddress1, at 0x3a)
	System Bus Address 95:64 (sbaddress2, at 0x3b)
	System Bus Data 31:0 (sbdata0, at 0x3c)
	System Bus Data 63:32 (sbdata1, at 0x3d)
	System Bus Data 95:64 (sbdata2, at 0x3e)
	System Bus Data 127:96 (sbdata3, at 0x3f)

	RISC-V Debug
	Debug Mode
	Load-Reserved/Store-Conditional Instructions
	Single Step
	Reset
	dret Instruction

	Core Debug Registers
	Debug Control and Status (dcsr, at 0x7b0)
	Debug PC (dpc, at 0x7b1)
	Debug Scratch Register 0 (dscratch0, at 0x7b2)
	Debug Scratch Register 1 (dscratch1, at 0x7b3)

	Virtual Debug Registers
	Privilege Level (priv, at virtual)

	Trigger Module
	Trigger Registers
	Trigger Select (tselect, at 0x7a0)
	Trigger Data 1 (tdata1, at 0x7a1)
	Trigger Data 2 (tdata2, at 0x7a2)
	Trigger Data 3 (tdata3, at 0x7a3)
	Match Control (mcontrol, at 0x7a1)
	Instruction Count (icount, at 0x7a1)

	Debug Transport Module (DTM)
	JTAG Debug Transport Module
	JTAG Background
	JTAG DTM Registers
	IDCODE (at 0x01)
	DTM Control and Status (dtmcs, at 0x10)
	Debug Module Interface Access (dmi, at 0x11)
	BYPASS (at 0x1f)
	Recommended JTAG Connector

	Hardware Implementations
	Abstract Command Based
	Execution Based

	Debugger Implementation
	Debug Module Interface Access
	Main Loop
	Halting
	Running
	Single Step
	Accessing Registers
	Using Abstract Command
	Using Program Buffer

	Reading Memory
	Using System Bus Access
	Using Program Buffer

	Writing Memory
	Using System Bus Access
	Using Program Buffer

	Handling Exceptions
	Quick Access

	Future Ideas
	Serial Ports
	Serial Control and Status (sercs, at 0x34)
	Serial TX Data (sertx, at 0x35)
	Serial RX Data (serrx, at 0x36)

	Index
	Change Log

