
The RISC-V Instruction Set Manual
Volume I: User-Level ISA

Document Version 2.2
Memory Consistency Model Addendum

Daniel Lustig
NVIDIA

dlustig@nvidia.com

May 12, 2017

The RISC-V Foundation is still working to choose and formalize a memory consistency model
that meets the needs of all RISC-V implementers. In the meantime, until the memory model is
settled, we recommend that implementers of processors be conservative in how they implement
the memory model, and that system software writers be conservative in how they use it. Both
parties can expect compatibility with the memory consistency model, provided they adhere to the
following strictures:

• Hardware implementers should err on the side of caution by assuming that RISC-V may
adopt a memory model as strong as Total Store Ordering (TSO). In particular:

– Architects should pay careful attention to agressive memory access reordering, aggressive
cache cache coherence protocols, and designs that share store buffers between threads.

– Hardware should respect all same-address orderings (including load-load pairs) and any
orderings established by address, control, and data dependencies.

• Assembly programmers should err on the side of caution and assume that RISC-V may adopt
a weakly ordered memory model. We recommend using a full fence instruction where the
corresponding code on other weakly ordered architectures employs any fence.

• Compiler writers should for now continue to use the intuitive mappings from language-level
memory ordering to RISC-V operations. In particular,

1



C/C++ Construct Base ISA Mapping ‘A’ Extension Mapping

Loads

Non-atomic Load ld

atomic load(memory order relaxed) ld

atomic load(memory order consume) ld; fence r,rw

atomic load(memory order acquire) ld; fence r,rw

atomic load(memory order seq cst) fence rw,rw; ld; fence r,rw

Stores

Non-atomic Store sd

atomic store(memory order relaxed) sd

atomic store(memory order release) fence rw,w; sd amoswap.rl

atomic store(memory order seq cst) fence rw,rw; sd fence rw,rw; amoswap

Fences

atomic thread fence(memory order acquire) fence r,rw

atomic thread fence(memory order release) fence rw,w

atomic thread fence(memory order acq rel) fence rw,rw

atomic thread fence(memory order seq cst) fence rw,rw

Furthermore, we recommend compiler writers avoid fences weaker than fence r,rw, fence
rw, w, and fence rw, rw until the memory model clarifies their semantics. Additionally,
while AMOs with both the aq and rl bits set do imply both aq and rl semantics, we
recommend against their use until the memory model clarifies their combined semantics.

Undoubtedly, our recommendations either to hardware implementers or to software writers
will prove to be overly conservative; possibly both. Once the Foundation has decided upon a
memory consistency model, the conservative implementations can easily be weakened to improve
performance.

Any questions or comments about the status of the memory consistency model or the above
recommendations should be directed to the RISC-V Foundation’s Memory Consistency Model Task
Group.

2


