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Draft Status

This document is a draft of the RISC-V memory consistency model specification, plus some ac-
companying explanatory material. The details, formatting, and commentary are all still subject to
change before official ratification takes place. The formalizations are still a work in progress.

If you see any typos, errors, or omissions, or have feedback for how to improve the document,
please reach out to the RISC-V memory model task group, to isa-dev, and/or to chair Dan Lustig
(dlustig@nvidia.com).

Over the coming weeks, we will aim to merge the memory model specification itself into the User-
Level ISA specification, and the rest of the explanatory material will be compiled into a separate
document or chapter (details TBD). Official ratification of the User-Level ISA (including the mem-
ory model) will take place sometime after that merge is completed.
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Chapter 1

The RISC-V Memory Model

This document defines the RISC-V memory consistency model. A memory consistency model is a
set of rules that specifies which values can be legally returned by loads of memory. The RISC-V ISA
by default uses a memory model called “RVWMO” (RISC-V Weak Memory Ordering). RVWMO
is designed to provide lots of flexibility for architects to build high-performance scalable designs
while simultaneously providing a relatively sane memory model to programmers.

The RISC-V ISA also provides the optional Ztso extension which imposes the stronger RVTSO
(RISC-V Total Store Ordering) memory model for hardware that chooses to provide it. RVTSO
provides a simpler programming model but is more restrictive on the implementations that can be
legally built.

Under both models, code running on a single hart will appear to execute in order from the perspec-
tive of other memory operations in the same hart, but memory instructions from another hart may
observe the memory instructions from the first hart being executed in a different order. There-
fore, under both models, multithreaded code may require explicit synchronization to guarantee
ordering between memory operations from different harts. The base RISC-V ISA provides a fence

instruction for this purpose, while the optional “A” atomics extension defines load-reserved/store-
conditional and atomic read-modify-write operations.

The RVWMO and RVTSO models are formalized as presented, but the interaction of the memory
model with I/O, instruction fetches, page table walks, and sfence.vma is not formalized. We
may formalize some or all of them in a future revision. The “V” vector, transactional memory,
and “J” JIT extensions will need to be incorporated into a future revision as well.

Memory models which permit memory accesses of different sizes are an active and open area
of research, and the specifics of how the RISC-V memory model deals with mixed-size memory
accesses is subject to change. Nevertheless, we provide an educated guess at sane rules for such
situations as a guideline for architects and implementers.

1.1 Definition of the RVWMO Memory Model

The RVWMO memory model is defined in terms of the global memory order, a total ordering of
the memory accesses produced by all harts. In general, a multithreaded program will have many
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different possible executions, and each execution will have its its own corresponding global memory
order.

The global memory order is defined in terms of the primitive load(s) and/or store(s) generated by
each memory instruction. It is then subject to the constraints defined in the rest of this chapter.
Any execution which satisfies all of the memory model constraints is a legal execution (as far as
the memory model is concerned).

1.1.1 Memory Model Primitives

The RVWMO memory model is specified in terms of the memory accesses generated by each
instruction. The program order over memory accesses reflects the order in which the instructions
that generate each load and store are originally laid out in that hart’s dynamic instruction stream;
i.e., the order in which a simple in-order processor would execute the instructions of that hart.
Table 1.1 summarizes the memory accesses generated by each type of memory instruction.

RISC-V Instruction Memory Accesses

l{b|h|w|d} load∗

s{b|h|w|d} store∗

lr load
lr.aq load-acquire-RCpc
lr.aqrl load-acquire-RCsc
lr.rl (deprecated)

sc store
sc.rl store-release-RCpc
sc.aqrl store-release-RCsc
sc.aq (deprecated)

amo<op> load; <op>; store
amo<op>.aq load-acquire-RCpc; <op>; store
amo<op>.rl load; <op>; store-release-RCpc
amo<op>.aqrl load-SC; <op>; store-SC
∗: possibly multiple if misaligned

Table 1.1: Mapping of instructions into memory accesses, for the purposes of describing the memory
model. “.sc” is a synonym for “.aqrl”.

Every aligned load or store instruction gives rise to exactly one memory access that executes in a
single-copy atomic fashion: it can never be observed in a partially-incomplete state. Every mis-
aligned load or store may be decomposed into a set of component loads or stores at any granularity.
The memory accesses generated by misaligned loads and stores are not ordered with respect to
each other in program order, but they are ordered with respect to the memory accesses generated
by preceding and subsequent instructions in program order.

The legal decomposition of unaligned memory operations down to even byte granularity facilitates
emulation on implementations that do not natively support unaligned accesses. Such implemen-
tations might, for example, simply iterate over the bytes of a misaligned access one by one.
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AMOs give rise to exactly two memory accesses: one load and one store. These accesses are
said to be paired. Every lr instruction gives rise to exactly one load. Every sc instruction gives
rise to either zero stores or one store, depending on whether the store conditional succeeds. An
lr instruction is said to be paired with the first sc instruction that follows it in program order,
unless the sc is not successful or there is another lr instruction in between. The memory accesses
generated by paired lr and (successful) sc instructions are also said to be paired. Both lr and
sc instructions may be unpaired if they do not meet the conditions above. The complete list of
conditions determining the success or failure of store conditional instructions is defined in the “A”
extension.

Loads and stores generated by atomics may carry ordering annotations. Loads may carry “acquire-
RCpc” or “acquire-RCsc” annotations. The term “load-acquire” without further annotation refers
to both collectively. Stores may carry “release-RCpc” or “release-RCsc” annotations, and once
again “store-release” without further annotation refers to both together. In the memory model lit-
erature, the term “RCpc” stands for release consistency with processor-consistent synchronization
operations, and the term “RCsc” stands for release consistency with sequentially-consistent syn-
chronization operations. Finally, AMOs with both .aq and .rl set are sequentially-consistent in
an even stronger sense: they do not allow any reordering in either direction. The precise semantics
of these annotations as they apply to RVWMO are described by the memory model rules below.

Although the ISA does not currently contain l{b|h|w|d}.aq[rl] or s{b|h|w|d}.[aq]rl in-
structions, we may add them as assembler pseudoinstructions to facilitate forwards compatibility
with their potential future addition into the ISA. These pseudoinstructions will generally assem-
ble per the fence-based mappings of Section 2.6 until if and when the instructions are added to
the ISA. The RVWMO memory model is also designed to easily accommodate the possible future
inclusion of such instructions.

1.1.2 Dependencies

The definition of the RVWMO memory model depends in part on the notion of a syntactic depen-
dency. A register r read by an instruction b has a syntactic dependency on an instruction a if a
precedes b in program order, r is not x0, and either of the following hold:

1. r is written by a and read by b, and no other instruction between a and b in program order
modifies r

2. There is some other instruction i such that a register read by i has a dependency on a, and
a register read by b has a dependency on i

Specific types of dependencies are defined as follows. First, for two instructions a and b, b has a
syntactic address dependency on a if a register used to calculate the address accessed by b has a
syntactic dependency on a. Second, b has a syntactic data dependency on a if b is a store and a
register used to calculate the data being written by b has a syntactic dependency on a. Third, b
has a syntactic control dependency on a if there exists a branch m between a and b in program
order such that a register checked as part of the condition of m has a syntactic dependency on a.
Finally, b has a syntactic success dependency on a if a is a store-conditional and a register read by
b has a register dependency on the store conditional success register written by a.
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1.1.3 Preserved Program Order

The global memory order for any given execution of a program respects some but not necessarily
all of each hart’s program order. The subset of program order which must be respected by the
global memory order for all executions is known as preserved program order.

The complete definition of preserved program order is as follows: memory access a precedes memory
access b in preserved program order (and hence also in the global memory order) if a precedes b in
program order, a and b are both accesses to normal memory (i.e., not to I/O regions), and any of
the following hold:

• Basic same-address orderings:

1. a and b are accesses to overlapping memory addresses, and b is a store

• Explicit synchronization

2. a and b are separated in program order by a fence, a is in the predecessor set of the
fence, and b is in the successor set of the fence

3. a is a load-acquire

4. b is a store-release

5. a is a store-release-RCsc and b is a load-acquire-RCsc

6. a is a store-SC

7. b is a load-SC

• Dependencies

8. a is a load, and b has a syntactic address dependency on a

9. a is a load, b is a store, and b has a syntactic data dependency on a

10. a is a load, b is a store, and b has a syntactic control dependency on a

11. a is a load, and there exists some m such that m has an address or data dependency on
a and b has a success dependency on m

• Same-address load-load ordering

12. a and b are loads to overlapping memory addresses, there is no store to overlapping
memory location(s) between a and b in program order, and a and b return values from
different stores

• Pipeline dependency artifacts

13. a and b are loads, and there exists some store m between a and b in program order such
that m has an address or data dependency on a, m accesses a memory address that
overlaps the address accessed by b, and there is no other store to an overlapping memory
location(s) between m and b

14. b is a store, and there exists some instruction m between a and b in program order such
that m has an address dependency on a
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15. a and b are loads, b has a syntactic control dependency on a, and there exists a fence.i

between the branch used to form the control dependency and b in program order

16. a is a load, there exists an instruction m which has a syntactic address dependency on
a, and there exists a fence.i between m and b in program order

1.1.4 Memory Model Axioms

An execution of a RISC-V program obeys the RVWMO memory consistency model only if it obeys
the load value axiom and the atomicity axiom.

Load Value Axiom: Each byte of each load returns the corresponding byte written by the
whichever of the following two stores comes later in the global memory order:

1. the latest store to the same address and preceding the load in the global memory order

2. the latest store to the same address and preceding the load in program order

Atomicity Axiom: If r and w are a paired load and store, and if s is any store from which r
returns a value, then there can be no store from another hart to an overlapping memory location
which follows both r and s and which precedes w in the global memory order.

1.2 Definition of the RVTSO Memory Model

RISC-V cores which implement Ztso impose RVTSO onto all memory accesses. RVTSO behaves
just like RVWMO but with the following modifications:

• All l{b|h|w|d|r} instructions behave as if .aq is set

• All s{b|h|w|d|c} instructions behave as if .rl is set

• All AMO instructions behave as if .aq and .rl are both set

These rules render PPO rules 1 and 8–16 redundant. They also make redundant any non-I/O
fences that do not have both .pw and .sr set. Finally, they also imply that all AMO instructions
are fully-fenced; nothing will be reordered past an AMO.

The definitions of RVTSO and Ztso are new and have not yet been reviewed as carefully as the
RVWMO model. For example, it is not yet properly specified how LR/SC will behave under
RVTSO.
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Chapter 2

RVWMO Explanatory Material

This section provides more explanation for the RVWMO memory model, using more informal
language and concrete examples. These are intended to clarify the meaning and intent of the
axioms and preserved program order rules.

2.1 Why RVWMO?

Memory consistency models fall along a loose spectrum from weak to strong. Weak memory models
(e.g., ARMv7, Power, Alpha) allow more hardware implementation flexibility and deliver arguably
better performance, performance per watt, power, scalability, and hardware verification overheads
than strong models, at the expense of a more complex programming model. Strong models (e.g.,
sequential consistency, TSO) provide simpler programming models, but at the cost of imposing
more restrictions on the kinds of hardware optimizations that can be performed in the pipeline
and in the memory system, with some cost to power and area overheads, and with some added
hardware verification burden.

For the base ISA, RISC-V has chosen the RVWMO memory model, which is a variant of release
consistency. This places it in between the two extremes of the memory model spectrum. It is
not as weak as the Power memory model, and this buys back some programming model simplicity
without giving up very much in terms of performance. RVWMO is also not as restrictive as RVTSO,
and hence it remains weak enough to ensure that implementations can be performant and scalable
without incurring huge hardware complexity overheads. RVWMO is similar to the ARMv8 memory
model in this regard.

As such, the RVWMO memory model enables architects to build simple implementations, aggressive
implementations, implementations embedded deeply inside a much larger system and subject to
complex memory system interactions, or any number of other possibilities, all while simultaneously
being strong enough to support programming language memory models at high performance.

The risk of a weak memory model lies in the complexity of the programming model. Buggy code
which “just worked” on stronger implementations may well break on more aggressive implementa-
tions due to the bugs simply not manifesting on the stronger-than-necessary implementations. For
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these situations, though, the root cause is the bug in the original software, not the memory model
itself. The risk of finding short-term bugs in code ported from other architectures is outweighed by
the long-term benefits that the weak memory model delivers more generally.

To mitigate this risk, some hardware implementations may choose to stick with RVTSO, and that
is perfectly acceptable and perfectly compatible with the RVWMO memory model. The cost that
the weak memory model imposes on such implementations is the incremental overhead of fetching
instructions (e.g., fence r,rw and fence rw,w) which become no-ops on that implementation.
(These fences must remain present in the code to ensure compatibility with other more weakly-
ordered RISC-V implementations.)

Most software is also fully compatible with weak memory models. C/C++, Java, and Linux, to
name some of the most notable and more formally analyzed examples, are all entirely compatible
with weak non-atomic memory models, as all are designed to run not just on x86 but also on ARM,
Power, and many other architectures. It is true that some code, e.g., code ported from x86, does
sometimes (correctly or incorrectly) assume a stronger model such as TSO. For such code, the
RVWMO memory model provides a means for restoring TSO to sections of code through fences
and atomics with .aq and .rl bits in the “A” extension, until such code can be ported to RVWMO
over time.

Designers who wish to provide drop-in compatibility with x86 code can also implement the Ztso
extension which enforces RVTSO. Code written for RVWMO is automatically and inherently com-
patible with RVTSO, but code written assuming RVTSO is not guaranteed to run correctly on
RVWMO implementations. In fact, RVWMO implementations will (and should) simply refuse to
run TSO-only binaries. Each implementation must therefore choose whether to prioritize com-
patibility with RVTSO code (e.g., to facilitate porting from x86) or whether to instead prioritize
compatibility with other RISC-V cores implementing RVWMO.

2.2 Litmus Tests

The explanations in this chapter make use of litmus tests, or small programs designed to test or
highlight one particular aspect of a memory model. Figure 2.1 shows an example of a litmus test
with two harts. For this figure (and for all figures that follow in this chapter), we assume that
s0–s2 are pre-set to the same value in all harts. As a convention, we will assume that s0 holds the
address labeled x, s1 holds y, and s2 holds z, where x, y, and z are different memory addresses.
This figure shows the same program twice: on the left in RISC-V assembly, and again on the right
in graphical form.

Litmus tests are used to understand the implications of the memory model in specific concrete
situations. For example, in the litmus test of Figure 2.1, the final value of a0 in the first hart can
be either 2, 4, or 5, depending on the dynamic interleaving of the instruction stream from each hart
at runtime. However, in this example, the final value of a0 in Hart 0 will never be 1 or 3: the value
1 will no longer be visible at the time the load executes, and the value 3 will not yet be visible by
the time the load executes.

We analyze this test and many others below.
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Hart 0 Hart 1
...

...

li t1, 1 li t4, 4

(a) sw t1,0(s0) (e) sw t4,0(s0)
...

...

li t2, 2

(b) sw t2,0(s0)
...

...

(c) lw a0,0(s0)
...

...

li t3, 3 li t5, 5

(d) sw t3,0(s0) (f) sw t5,0(s0)
...

...

(picture coming soon)

Figure 2.1: A sample litmus test

2.3 Explaining the RVWMO Rules

In this section, we provide explanation and examples for all of the RVWMO rules and axioms.

2.3.1 Preserved Program Order and Global Memory Order

Preserved program order represents the set of intra-hart orderings that the hart’s pipeline must
ensure are maintained as the instructions execute, even in the presence of hardware optimizations
that might otherwise reorder those operations. Events from the same hart which are not ordered by
preserved program order, on the other hand, may appear reordered from the perspective of other
harts and/or observers.

Informally, the global memory order represents the order in which loads and stores perform. The
formal memory model literature has moved away from specifications built around the concept of
performing, but the idea is still useful for building up informal intuition. A load is said to have
performed when its return value is determined. A store is said to have performed not when it
has executed inside the pipeline, but rather only when its value has been propagated to globally
visible memory. In this sense, the global memory order also represents the contribution of the
coherence protocol and/or the rest of the memory system to interleave the (possibly reordered)
memory accesses being issued by each hart into a single total order agreed upon by all harts.

The order in which loads perform does not always directly correspond to the relative age of the
values those two loads return. In particular, a load b may perform before another load a to the same
address (i.e., b may execute before a, and b may appear before a in the global memory order), but
a may nevertheless return an older value than b. This discrepancy captures the reordering effects
of store buffers placed between the core and memory: a younger load may read from a value in
the store buffer, while an older load which appears before that store in program order may ignore
that younger store and read an older value from memory instead. To account for this, at the time
each load performs, the value it returns is determined by the load value axiom, not just strictly by
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determining the most recent store to the same address in the global memory order, as described
below.

2.3.2 Store Buffering (Load Value Axiom)

Load value axiom: Each byte of each load returns the corresponding
byte written by the whichever of the following two stores comes later in
the global memory order:

1. the latest store to the same address and preceding the load in the
global memory order

2. the latest store to the same address and preceding the load in
program order

Preserved program order is not required to respect the ordering of a store followed by a load to
an overlapping address. This complexity arises due to the ubiquity of store buffers in nearly all
implementations. Informally, the load may perform (return a value) by forwarding from the store
while the store is still in the store buffer, and hence before the store itself performs (writes back to
globally visible memory). Any other hart will therefore observe the load as performing before the
store.

Hart 0 Hart 1

li t1, 1 li t1, 1

(a) sw t1,0(s0) (e) sw t1,0(s1)

(b) lw a0,0(s0) (f) lw a2,0(s1)

(c) fence r,r (g) fence r,r

(d) lw a1,0(s1) (h) lw a3,0(s0)

(picture coming soon)

Figure 2.2: A store buffer forwarding litmus test

Consider the litmus test of Figure 2.2. When running this program on an implementation with
store buffers, it is possible to arrive at the final outcome a0=1, a1=0, a2=1, a3=0 as follows:

• (a) executes and enters the first hart’s private store buffer

• (b) executes and forwards its return value 1 from (a) in the store buffer

• (c) executes since all previous loads (i.e., (b)) have completed

• (d) executes and reads the value 0 from memory

• (e) executes and enters the second hart’s private store buffer

• (f) executes and forwards its return value 1 from (d) in the store buffer

• (g) executes since all previous loads (i.e., (f)) have completed

• (h) executes and reads the value 0 from memory

• (a) drains from the first hart’s store buffer to memory
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• (e) drains from the second hart’s store buffer to memory

Therefore, the memory model must be able to account for this behavior.

To put it another way, suppose the definition of preserved program order did include the following
hypothetical rule: memory access a precedes memory access b in preserved program order (and
hence also in the global memory order) if a precedes b in program order and a and b are accesses
to the same memory location, a is a write, and b is a read. Call this “Rule X”. Then we get the
following:

• (a) precedes (b): by rule X

• (b) precedes (d): by rule 2

• (d) precedes (e): by the load value axiom. Otherwise, if (d) preceded (c), then (d) would be
required to return the value 1. (This is a perfectly legal execution; it’s just not the one in
question)

• (e) precedes (f): by rule X

• (f) precedes (h): by rule 2

• (h) precedes (a): by the load value axiom, as above.

The global memory order must be a total order and cannot be cyclic, because a cycle would imply
that every event in the cycle happens before itself, which is impossible. Therefore, the execution
proposed above would be forbidden, and hence the addition of rule X would break the memory
model.

Nevertheless, even if (b) precedes (a) and/or (f) precedes (e) in the global memory order, the only
sensible possibility in this example is for (b) to return the value written by (a), and likewise for (f)
and (e). This combination of circumstances is what leads to the second option in the definition of
the load value axiom. Even though (b) precedes (a) in the global memory order, (a) will still be
visible to (b) by virtue of sitting in the store buffer at the time (b) executes. Therefore, even if (b)
precedes (a) in the global memory order, (b) should return the value written by (a) because (a)
precedes (b) in program order. Likewise for (e) and (f).

2.3.3 Same-Address Orderings, Part 1 (Rule 1)

Rule 1: a and b are accesses to overlapping memory addresses, and b is
a store

Same-address orderings where the latter is a store are straightforward: a load or store can never
be reordered with a later store to an overlapping memory location. From a microarchitecture
perspective, generally speaking, it is difficult or impossible to undo a speculatively reordered store
if the speculation turns out to be invalid, so such behavior is simply disallowed by the model.

Same-address load-load orderings are far more subtle; see Chapter 2.3.7.
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2.3.4 Fences (Rule 2)

Rule 2: a and b are separated in program order by a fence, a is in the
predecessor set of the fence, and b is in the successor set of the fence

By default, the fence instruction ensures that all memory accesses from instructions preceding
the fence in program order (the “predecessor set”) appear later in the global memory order than
memory accesses from instructions appearing after the fence in program order (the “successor set”).
However, fences can optionally further restrict the predecessor set and/or the successor set to a
smaller set of memory accesses in order to provide some speedup. Specifically, fences have .pr,
.pw, .sr, and .sw bits which restrict the predecessor and/or successor sets. The predecessor set
includes loads (resp. stores) if and only if .pr (resp. .pw) is set. Similarly, the successor set includes
loads (resp. stores) if and only if .sr (resp. .sw) is set.

The full RISC-V opcode encoding currently has nine non-trivial combinations of the four bits pr,
pw, sr, and sw, plus one extra encoding which is expected to be added to facilitate mapping of
“acquire+release” or TSO semantics. The remaining seven combinations have empty predecessor
and/or successor sets and hence are no-ops. Of the ten non-trivial options, only six are commonly
used in practice:

• fence rw,rw

• fence.tso (i.e., a combined fence r,rw + fence rw,w)

• fence rw,w

• fence r,rw

• fence r,r

• fence w,w

We strongly recommend that programmers stick to these six, as these are the best understood.
fence instructions using any other combination of .pr, .pw, .sr, and .sw are reserved.

Finally, we note that since RISC-V uses a multi-copy atomic memory model, programmers can
reason about fences and the .aq and .rl bits in a thread-local manner. There is no complex notion
of “fence cumulativity” as found in memory models which are not multi-copy atomic.

2.3.5 Acquire/Release Ordering (Rules 3–7)

Rule 3: a is a load-acquire
Rule 4: b is a store-release
Rule 5: a is a store-release-RCsc and b is a load-acquire-RCsc
Rule 6: a is a store-SC
Rule 7: b is a load-SC

An acquire operation is used at the start of a critical section. The general requirement for acquire
semantics is that all loads and stores inside the critical section are up to date with respect to the



15

synchronization variable being used to protect it. In other words, an acquire operation requires
load-to-load/store ordering. Acquire ordering can be enforced in one of two ways: setting .aq,
which enforces ordering with respect to just the synchronization variable itself, or with a FENCE

r,rw, which enforces ordering with respect to all previous loads.

sd x1, (a1) # Random unrelated store

ld x2, (a2) # Random unrelated load

li t0, 1 # Initialize swap value.

again:

amoswap.w.aq t0, t0, (a0) # Attempt to acquire lock.

bnez t0, again # Retry if held.

# ...

# Critical section.

# ...

amoswap.w.rl x0, x0, (a0) # Release lock by storing 0.

sd x3, (a3) # Random unrelated store

ld x4, (a4) # Random unrelated load

Figure 2.3: A spinlock with atomics

Consider Figure 2.3: Because this example uses .aq, the loads and stores in the critical section
are guaranteed to appear in the global memory order after the amoswap used to acquire the lock.
However, assuming a0, a1, and a2 point to different memory locations, the loads and stores in the
critical section may or may not appear after the “random unrelated load” at the beginning of the
example in the global memory order.

sd x1, (a1) # Random unrelated store

ld x2, (a2) # Random unrelated load

li t0, 1 # Initialize swap value.

again:

amoswap.w t0, t0, (a0) # Attempt to acquire lock.

fence r, rw # Enforce "acquire" memory ordering

bnez t0, again # Retry if held.

# ...

# Critical section.

# ...

fence rw, w # Enforce "release" memory ordering

amoswap.w x0, x0, (a0) # Release lock by storing 0.

sd x3, (a3) # Random unrelated store

ld x4, (a4) # Random unrelated load

Figure 2.4: A spinlock with fences

Now, consider the alternative in Figure 2.4. In this case, even though the amoswap does not enforce
ordering with an .aq bit, the fence nevertheless enforces that the acquire amoswap appears earlier
in the global memory order than all loads and stores in the critical section. Note, however, that in
this case, the fence also enforces additional orderings: it also requires that the “random unrelated
load” at the start of the program appears also appears earlier in the global memory order than
the loads and stores of the critical section. (This particular fence does not, however, enforce any
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ordering with respect to the “random unrelated store” at the start of the snippet.) In this way,
fence-enforced orderings are slightly coarser than orderings enforced by .aq.

Release orderings work exactly the same as acquire orderings, just in the opposite direction. Release
semantics require all loads and stores in the critical section to appear before the lock-releasing store
(here, an amoswap) in the global memory order. This can be enforced using the .rl bit or with a
fence rw,w operations. Likewise, the ordering between the loads and stores in the critical section
and the “random unrelated store” at the end of the code snippet is enforced only by the fence

rw,w in the second example, not by the .rl in the first example.

By default, store-release-to-load-acquire ordering is not enforced. This facilitates the porting of
code written under the TSO and/or RCpc memory models; see Chapter 2.6 for details. To enforce
store-release-to-load-acquire ordering, use store-release-RCsc and load-acquire-RCsc operations, so
that PPO rule 5 applies. The use of only store-release-RCsc and load-acquire-RCsc operations
implies sequential consistency, as the combination of PPO rules 3–5 implies that all RCsc accesses
will respect program order.

AMOs with both .aq and .rl set are fully-ordered operations. Treating the load part and the
store part as independent RCsc operations is not in and of itself sufficient to enforce full fencing
behavior, but this subtle weak behavior is counterintuitive and not much of an advantage architec-
turally, especially with lr and sc also available. For this reason, AMOs annotated with .aqrl are
strengthened to being fully-ordered under RVWMO.

2.3.6 Dependencies (Rules 8–11)

Rule 8: a is a load, and b has a syntactic address dependency on a
Rule 9: a is a load, b is a store, and b has a syntactic data dependency
on a
Rule 10: a is a load, b is a store, and b has a syntactic control dependency
on a
Rule 11: a is a load, and there exists some m such that m has an address
or data dependency on a and b has a success dependency on m

Dependencies from a load to a later memory operation in the same hart are respected by the
RVWMO memory model. The Alpha memory model was notable for choosing not to enforce the
ordering of such dependencies, but most modern hardware and software memory models consider
allowing dependent instructions to be reordered too confusing and counterintuitive. Furthermore,
modern code sometimes intentionally uses such dependencies as a particularly lightweight ordering
enforcement mechanism.

Like other modern memory models, the RVWMO memory model uses syntactic rather than se-
mantic dependencies. In other words, this definition depends on the identities of the registers
being accessed by different instructions, not the actual contents of those registers. This means that
an address, control, or data dependency must be enforced even if the calculation could seemingly
be “optimized away”. This choice ensures that RVWMO remains compatible with programmers
that use these false syntactic dependencies intentionally to form a lightweight type of ordering
mechanism.
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For example, there is a syntactic address dependency from the first instruction to the last instruction
in the Figure 2.5, even though a1 XOR a1 is zero and hence has no effect on the address accessed
by the second load.

ld a1,0(s0)

xor a2,a1,a1

add s1,s1,a2

ld a5,0(s1)

Figure 2.5: A syntactic address dependency

The benefit of using dependencies as a lightweight synchronization mechanism is that the ordering
enforcement requirement is limited only to the specific two instructions in question. Other non-
dependent instructions may be freely-reordered by aggressive implementations. One alternative
would be to use a load-acquire, but this would enforce ordering for the first load with respect to all
subsequent instructions. Another would be to use a fence r,r, but this would include all previous
and all subsequent loads, making this option each more expensive.

Control dependencies behave differently from address and data dependencies in the sense that a
control dependency always extends to all instructions following the original target in program order.
Consider Figure 2.6: the instruction at next will always execute, but it nevertheless still has control
dependency from the first instruction.

lw x1,0(x2)

bne x1,x0,NEXT

sw x3,0(x4)

next: sw x5,0(x6)

Figure 2.6: A syntactic control dependency

lw x1,0(x2)

bne x1,x0,NEXT

next: sw x3,0(x4)

Figure 2.7: Another syntactic control dependency

Likewise, consider Figure 2.7. Even though both branch outcomes have the same target, there is
still a control dependency from the first instruction in this snippet to the last. This definition of
control dependency is subtly stronger than what might be seen in other contexts (e.g., C++), but
it conforms with standard definitions of control dependencies in the literature.

Hart 0 Hart 1

(a) ld a0,0(s0) (e) ld a3,0(s2)

(b) lr a1,0(s1) (f) sd a3,0(s0)

(c) sc a2,a0,0(s1)

(d) sd a2,0(s2)

(picture coming soon)

Figure 2.8: A variant of the LB litmus test

Finally, we highlight a unique new rule regarding the success registers written by store-conditional
instructions. In certain cases, without PPO rule 11, a store conditional could in theory be made to



18

store its own success output value as its data, in a manner reminiscent of so-called out-of-thin-air
behavior. This is shown in Figure 2.8. Suppose a hypothetical implementation could occasionally
make some early guarantee that a store-conditional operation will succeed. In this case, (c) could
return 0 to a2 early (before actually executing), allowing the sequence (d), (e), (f), (a), and then
(b) to execute, and then (c) might execute (successfully) only at that point. This would imply that
(c) writes its own success value to 0(s1)!

To rule out this bizarre behavior, PPO rule 11 says that store-conditional instructions may not
return success or failure into the destination register until both the address and data for the
instruction have been resolved. In the example above, this would enforce an ordering from (a) to
(d), and this would in turn form a cycle that rules out the strange proposed execution.

2.3.7 Same-Address Load-Load Ordering (Rule 12)

Rule 12: a and b are loads to overlapping memory addresses, there is
no store to overlapping memory location(s) between a and b in program
order, and a and b return values from different stores

In contrast to same-address orderings ending in a store, same-address load-load ordering require-
ments are very subtle.

The basic requirement is that a younger load must not return a value which is older than a value
returned by an older load in the same hart to the same address. This is often known as “CoRR”
(Coherence for Read-Read pairs), or as part of a broader “coherence” or “sequential consistency
per location” requirement. Some architectures in the past have relaxed same-address load-load
ordering, but in hindsight this is generally considered to complicate the programming model too
much, and so RVWMO requires CoRR ordering to be enforced. However, because the global
memory order corresponds to the order in which loads perform rather than the ordering of the
values being returned, capturing CoRR requirements in terms of the global memory order requires
a bit of indirection.

Hart 0 Hart 1

li t1, 1 li t2, 2

(a) sw t1,0(s0) (d) lw a0,0(s1)

(b) fence w, w (e) sw t2,0(s1)

(c) sw t1,0(s1) (f) lw a1,0(s1)

(g) xor t3,a1,a1

(h) add s0,s0,t3

(i) lw a2,0(s0)

(picture coming soon)

Figure 2.9: Litmus test MP+FENCE+fri-rfi-addr

Consider the litmus test of Figure 2.9, which is one particular instance of the more general “fri-rfi”
pattern. The term “fri-rfi” refers to the sequence (d),(e),(f): (d) “from-reads” (i.e., reads from an
earlier write than) (e) which is the same hart, and (f) reads from (e) which is in the same hart.

From a microarchitectural perspective, outcome a0=1, a1=2, a2=0 is legal (as are various other
less subtle outcomes). Intuitively, the following would produce the outcome in question:
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• (a), (b), (c) execute

• (d) stalls (for whatever reason; perhaps it’s stalled waiting for some other preceding instruc-
tion)

• (e) executes and enters the store buffer

• (f) forwards from (e) in the store buffer

• (g), (h), and (i) execute

• (d) unstalls and executes

• (e) drains from the store buffer to memory

This corresponds to a global memory order of (e),(f),(i),(a),(c),(d). Note that even though (f)
performs before (d), the value returned by (f) is newer than the value returned by (d). Therefore,
this execution is legal and does not violate the CoRR requirements even though (f) appears before
(d) in global memory order.

Likewise, if two back-to-back loads return the values written by the same store, then they may also
appear out-of-order in the global memory order without violating CoRR. Note that this is not the
same as saying that the two loads return the same value, since two different stores may write the
same value. Consider the litmus test of Figure 2.10:

Hart 0 Hart 1

li t1, 1 (d) lw a0,0(s1)

(a) sw t1,0(s0) (e) xor t2,a0,a0

(b) fence w, w (f) add s2,s2,t2

(c) sw t1,0(s1) (g) lw a1,0(s2)

(h) lw a2,0(s2)

(i) xor t3,a2,a2

(j) add s0,s0,t3

(k) lw a3,0(s0)

(picture coming soon)

Figure 2.10: Litmus test RSW

The outcome a0=1,a1=a2,a3=0 can be observed by allowing (g) and (h) to be reordered. This
might be done speculatively, and the speculation can be justified by the microarchitecture (e.g.,
by snooping for cache invalidations and finding none) because replaying (h) after (g) would return
the value written by the same store anyway. Hence assuming a1=a2, (g) and (h) can be reordered.
The global memory order corresponding to this execution would be (h),(k),(a),(c),(d),(g).

Executions of the above test in which a1 does not equal a2 do in fact require that (g) appears before
(h) in the global memory order. Allowing (h) to appear before (g) in the global memory order would
in fact result in a violation of CoRR, because then (h) would return an older value than that returned
by (g). Therefore, PPO rule 12 forbids this CoRR violation from occurring. As such, PPO rule 12
strikes a careful balance between enforcing CoRR in all cases while simultaneously being weak
enough to permit “RSW” and “fri-rfi” patterns that commonly appear in real microarchitectures.
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2.3.8 Atomics and LR/SCs (Atomicity Axiom)

Atomicity axiom: If r and w are a paired load and store, and if s is
any store from which r returns a value, then there can be no store from
another hart to an overlapping memory location which follows both r
and s and which precedes w in the global memory order.

The RISC-V architecture decouples the notion of atomicity from the notion of ordering. Unlike
architectures such as TSO, RISC-V atomics under RVWMO do not impose any ordering require-
ments by default. Ordering semantics are only guaranteed by the PPO rules that otherwise apply.
This relaxed nature allows implementations to be aggressive about forwarding values even before
a paired store has been committed to memory.

Roughly speaking, the atomicity rule states that there can be no store from another hart during
the time the reservation is held. For AMOs, the reservation is held as the AMO is being performed.
For successful lr/sc pairs, the reservation is held between the time the lr is performed and the
time the sc is performed. In most cases, the atomicity rule states that there can be no store from
another hart between the load and its paired store in global memory order.

There is one exception, however: if the paired load returns its value from a store s still in the
store buffer (which some implementations may permit), then the reservation may not need to be
acquired until s is ready to leave the store buffer, and this may occur after the paired load has
already performed. Therefore, in this case, the requirement is only that no other store from another
hart to an overlapping address can appear between time that s performs and the time that the
paired store performs. Consider the example of Figure 2.11:

Hart 0 Hart 1

li t1, 2 li t3, 2

li t2, 1 li t4, 1

(a) sd t1,0(s0) (d) sd t3,0(s1)

(b) amoor.aq a0,t2,0(s0) (e) amoswap.rl x0,t4,0(s0)

(c) sd t2,0(s1)

(picture coming soon)

Figure 2.11: A litmus test where the reservation for 0(s0) may not be acquired until after the load
of (b) has already completed

The outcome 0(s0)=3, 0(s1)=2 is legal, with the global memory order of (b0),(c),(d),(e),(a),(b1),
where (b0) and (b1) represent the load and store parts, respectively, of (b). The atomic operation
(b) does not need to grab the reservation until (a) is ready to leave the store buffer. Therefore,
although (e) is a store to the same address from another hart, and even though (e) lies between
(b0) and (b1) in global memory order, this execution does not violate the atomicity axiom because
(e) comes after (a) in global memory order.

(a) lr t0, 0(a0)

(b) sd t1, 0(a0)

(c) sc t2, 0(a0)

Figure 2.12: Store-conditional (c) may succeed on some implementations

The atomicity rule does not forbid loads from being interleaved between the paired operations
in program order or in the global memory order, nor does it forbid stores from the same hart
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from appearing between the paired operations in either program order or in the global memory
order. For example, the sequence in Figure 2.12 is legal, and the sc may (but is not guaranteed
to) succeed. By preserved program order rule 1, the program order of the three operations must
be maintained in the global memory order. This does not violate the atomicity axiom, because
the intervening non-conditional store is from the same hart as the paired load-reserved and store-
conditional instructions.

Hart 0 Hart 1

li t0, 1

(a) amoor.aq a0,t0,0(s0) (c) amoadd.aq a1,x0,0(s1)

(b) sd a0,0(s1) (d) ld a2,0(s0)

(picture coming soon)

Figure 2.13: The .aq applies only to the load part of (a), and hence it does not order the store
part of (a) before (b)

Likewise, in the test of Figure 2.13, the following global memory order could result in the outcome
a1=1, a2=0: (a0), (b), (c), (d), (a1).

Overall, the atomicity rule ensures that non-synchronization atomic operations (e.g., incrementing
a counter) can be made as efficient as possible in high-performance implementations, while simul-
taneously ensuring that the atomicity conditions necessary for achieving consensus are maintained.

2.3.9 Pipeline Dependency Artifacts (Rules 13–16)

Rule 13: a and b are loads, and there exists some store m between a
and b in program order such that m has an address or data dependency
on a, m accesses a memory address that overlaps the address accessed
by b, and there is no other store to an overlapping memory location(s)
between m and b
Rule 14: b is a store, and there exists some instruction m between a and
b in program order such that m has an address dependency on a
Rule 15: a and b are loads, b has a syntactic control dependency on a,
and there exists a fence.i between the branch used to form the control
dependency and b in program order
Rule 16: a is a load, there exists an instruction m which has a syntactic
address dependency on a, and there exists a fence.i between m and b
in program order

These four “compound dependency” rules reflect behaviors of almost all real processor pipeline
implementations, and they are added into the model explicitly to simplify the definition of the
formal operational memory model and to improve compatibility with known patterns on other
architectures.

(a) lw a0, 0(s0)

(b) sw a0, 0(s1)

(c) lw a1, 0(s1)

(picture coming soon)

Figure 2.14: Because of the data dependency from (a) to (b), (a) is also ordered before (c)

Rule 13 states that a load forward from a store until the address and data for that store are known.
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Consider Figure 2.14: (c) cannot be executed until the data for (b) has been resolved, because (c)
must return the value written by (b) (or by something even later in the global memory order).
Therefore, (c) will never execute before (a) has executed.

li t1, 1

(a) lw a0, 0(s0)

(b) sw a0, 0(s1)

sw t1, 0(s1)

(c) lw a1, 0(s1)

(picture coming soon)

Figure 2.15: Because of the extra store between (b) and (c), (a) is no longer necessarily ordered
before (c)

If there were another store to the same address in between (b) and (c), as in Figure 2.15, then (c)
would no longer dependent on the data of (b) being resolved, and hence the dependency of (c) on
(a), which produces the data for (b), would be broken.

One subtle related note is that amoswap does not contain a data dependency from its load to its
store. Nor does every sc have a data dependency on its paired lr. Therefore, Rule 13 does not
enforce an ordering from paired loads of this category to subsequent loads to overlapping addresses.

Rule 14 makes a similar observation to the previous rule: a store cannot be performed at memory
until all previous loads which might access the same address have themselves been performed. Such
a load must appear to execute before the store, but it cannot do so if the store were to overwrite
the value in memory before the load had a chance to read the old value.

li t1, 1

(a) lw a0, 0(s0)

(b) lw a1, 0(a0)

(c) sw t1, 0(s1)

(picture coming soon)

Figure 2.16: Because of the address dependency from (a) to (b), (a) is also ordered before (c)

Consider Figure 2.16: (c) cannot be executed until the address for (b) is resolved, because it may
turn out that the addresses match; i.e., that a0=s1. Therefore, (c) cannot be sent to memory before
(a) has executed and confirmed whether the addresses to indeed overlap.

(a) ld a0, 0(s0)

xor a1,a0,a0

bne a1, critical

critical: fence.i

(c) ld a1, 0(s1)

(picture coming soon)

Figure 2.17: Because of the control dependency from (a) to (c), (a) is also ordered before (c)

Rule 15 reflects the idiom of Figure 2.17 for a lightweight acquire fence: In this code snippet,
(c) cannot execute until the fence.i is cleared. The fence.i cannot clear until the branch has
executed and drained. The branch cannot execute until it receives the value from (a) through the
xor. Therefore, (a) must be ordered before (c) in the global memory order.

Rule 16 and Figure 2.18 present a similar situation: Once again, (c) cannot execute until the
fence.i is cleared. The fence.i cannot clear until both (a) and (b) have at least issued (even if
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(a) ld a0, 0(s0)

(b) ld a1, 0(a0)

fence.i

(c) ld a1, 0(s1)

(picture coming soon)

Figure 2.18: Because of the address dependency from (a) to (b) and the fence.i between (b) and
(c), (a) is also ordered before (c)

they have not yet returned a value). Finally, (b) cannot issue until it receives its address from (a).
Therefore, (a) must be ordered before (c).

2.4 FENCE.I, SFENCE.VMA, and I/O Fences

In this section, we provide an informal description of how the fence.i, sfence.vma, and I/O fences
interact with the memory model.

Instruction fetches and address translation operations (where applicable) follow the RISC-V mem-
ory model as well as the rules below.

• fence.i: Conceptually, fence.i ensures that no instructions following the fence.i are issued
until all instructions prior to the fence.i have executed (but not necessarily performed
globally). This implies that the fetch of each instruction following the fence.i in program
order appears later in the global memory order than all stores prior to the fence.i in program
order. That in turn means that instruction caches which hardware does not keep coherent
with normal memory must be flushed when a fence.i instruction is executed. (fence.i is
also used form the patterns of Chapter 2.3.9.)

• sfence.vma: Conceptually, the instruction fetch and address translation operations of each
instruction following the sfence.vma in program order appears later in the global memory
order than all stores prior to the sfence.vma in program order. This implies that stale entries
in the local hart’s TLBs must be invalidated.

• Conceptually, updates to the page table made by a hardware page table walker form a paired
atomic read-modify-write operation subject to the rules of the atomicity axiom

2.4.1 Coherence and Cacheability

The RISC-V ISA defines Physical Memory Attributes (PMAs) which specify, among other things,
whether portions of the address space are coherent and/or cacheable. See the privileged spec for
the complete details. Here, we simply discuss how the various details in each PMA relate to the
memory model:

• Main memory vs. I/O, and I/O memory ordering PMAs: the memory model as defined applies
to main memory regions. I/O ordering is discussed below.
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• Supported access types and atomicity PMAs: the memory model is simply applied on top of
whatever primitives each region supports.

• Coherence and cacheability PMAs: neither the coherence nor the cacheability PMAs affect
the memory model. The RISC-V privileged specification suggests that hardware-incoherent
regions of main memory are discouraged, but the memory model is compatible with hardware
coherence, software coherence, implicit coherence due to read-only memory, implicit coherence
due to only one agent having access, or otherwise. Likewise, non-cacheable regions may have
more restrictive behavior than cacheable regions, but the set of allowed behaviors does not
change regardless.

• Idempotency PMAs: Idempotency PMAs are used to specify memory regions for which loads
and/or stores may have side effects, and this in turn is used by the microarchitecture to
determine, e.g., whether prefetches are legal. This distinction does not affect the memory
model.

2.4.2 I/O Ordering

For I/O, the load value axiom and atomicity axiom in general do not apply, as both reads and
writes might have device-specific side effects. The preserved program order rules do not generally
apply to I/O either. Instead, we informally say that memory access a is ordered before memory
access b if a precedes b in program order and one or more of the following holds:

1. a and b are accesses to overlapping addresses in an I/O region

2. a and b are accesses to the same strongly-ordered I/O region

3. a and b are accesses to I/O regions, and the channel associated with the I/O region accessed
by either a or b is channel 1

4. a and b are accesses to I/O regions associated with the same channel (except for channel 0)

5. a and b are separated in program order by a FENCE, a is in the predecessor set of the FENCE,
and b is in the successor set of the FENCE. The predecessor and successor sets include the
sets described by all eight FENCE bits .pr, .pw, .pi, .po, .sr, .sw, .si, and .so.

6. a and b are accesses to I/O regions, and a has .aq set

7. a and b are accesses to I/O regions, and b has .rl set

8. a and b are accesses to I/O regions, and a and b both have .aq and .rl set

9. a and b are accesses to I/O regions, and a is an AMO that has .aq and .rl set

10. a and b are accesses to I/O regions, and b is an AMO that has .aq and .rl set

As described above, accesses to I/O memory require stronger synchronization that what is enforced
by the RVWMO PPO rules. For such cases, FENCE operations with .pi, .po, .si, and/or .so are
needed. For example, to enforce ordering between a write to normal memory and an MMIO write
to a device register, a FENCE w,o or stronger is needed. Even .aq and .rl do not enforce ordering



25

between normal memory accesses and accesses to I/O memory. When a fence is in fact used,
implementations must assume that the device may attempt to access memory immediately after
receiving the MMIO signal, and subsequent memory accesses from that device to memory must
observe the effects of all accesses ordered prior to that MMIO operation.

sd t0, 0(a0)

fence w,o

sd a0, 0(a1)

Figure 2.19: Ordering memory and I/O accesses

In other words, in Figure 2.19, suppose 0(a0) is in normal memory and 0(a1) is the address of
a device register in I/O memory. If the device accesses 0(a0) upon receiving the MMIO write,
then that load must conceptually appear after the first store to 0(a0) according to the rules of the
RVWMO memory model. In some implementations, the only way to ensure this will be to require
that the first store does in fact complete before the MMIO write is issued. Other implementations
may find ways to be more aggressive, while others still may not need to do anything different at
all for I/O and normal memory accesses. Nevertheless, the RVWMO memory model does not
distinguish between these options; it simply provides an implementation-agnostic mechanism to
specify the orderings that must be enforced.

Many architectures include separate notions of “ordering” and “completion” fences, especially as
it relates to I/O (as opposed to normal memory). Ordering fences simply ensure that memory
operations stay in order, while completion fences ensure that predecessor accesses have all completed
before any successors are made visible. RISC-V does not explicitly distinguish between ordering
and completion fences. Instead, this distinction is simply inferred from different uses of the FENCE
bits.

For implementations that conform to the RISC-V Unix Platform Specification, I/O devices, DMA
operations, etc. are required to access memory coherently and via strongly-ordered I/O channels.
Therefore, accesses to normal memory regions that are shared with I/O devices can also use the
standard synchronization mechanisms. Implementations which do not conform to the Unix Plat-
form Specification and/or in which devices do not access memory coherently will need to use
platform-specific mechanisms (such as cache flushes) to enforce coherency.

I/O regions in the address space should be considered non-cacheable regions in the PMAs for those
regions. Such regions can be considered coherent by the PMA if they are not cached by any agent.

The ordering guarantees in this section may not apply beyond a platform-specific boundary between
the RISC-V cores and the device. In particular, I/O accesses sent across an external bus (e.g., PCIe)
may be reordered before they reach their ultimate destination. Ordering must be enforced in such
situations according to the platform-specific rules of those external devices and buses.
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2.5 Code Examples

2.5.1 Compare and Swap

An example using lr/sc to implement a compare-and-swap function is shown in Figure 2.20. If
inlined, compare-and-swap functionality need only take three instructions.

# a0 holds address of memory location

# a1 holds expected value

# a2 holds desired value

# a0 holds return value, 0 if successful, !0 otherwise

cas:

lr.w t0, (a0) # Load original value.

bne t0, a1, fail # Doesn’t match, so fail.

sc.w a0, a2, (a0) # Try to update.

jr ra # Return.

fail:

li a0, 1 # Set return to failure.

jr ra # Return.

Figure 2.20: Sample code for compare-and-swap function using lr/sc.

2.5.2 Spinlocks

An example code sequence for a critical section guarded by a test-and-set spinlock is shown in Fig-
ure 2.21. Note the first AMO is marked .aq to order the lock acquisition before the critical section,
and the second AMO is marked .rl to order the critical section before the lock relinquishment.

li t0, 1 # Initialize swap value.

again:

amoswap.w.aq t0, t0, (a0) # Attempt to acquire lock.

bnez t0, again # Retry if held.

# ...

# Critical section.

# ...

amoswap.w.rl x0, x0, (a0) # Release lock by storing 0.

Figure 2.21: Sample code for mutual exclusion. a0 contains the address of the lock.

2.6 Code Porting Guidelines

Normal x86 loads and stores are all inherently acquire and release operations: TSO enforces
all load-load, load-store, and store-store ordering by default. All TSO loads must be mapped
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onto l{b|h|w|d}; fence r,rw, and all TSO stores must either be mapped onto amoswap.rl x0

or onto fence rw,w; s{b|h|w|d}. Alternatively, TSO loads and stores can be mapped onto
l{b|h|w|d}.aq and s{b|h|w|d}.rl assembler pseudoinstructions to facilitate forwards compat-
ibility in case such instructions are added to the ISA one day. However, in the meantime, the
assembler will generate the same fence-based and/or amoswap-based versions for these pseudoin-
structions. x86 atomics using the LOCK prefix are all sequentially consistent and when ported
naively to RISC-V must be marked as .aqrl.

A Power sync/hwsync fence, an ARM dmb fence, and an x86 mfence are all equivalent to a RISC-V
fence rw,rw. Power isync and ARM isb map to RISC-V fence.i. A Power lwsync map onto
fence.tso, or onto fence rw,rw when fence.tso is not available. ARM dmb ld and dmb st

fences map to RISC-V fence r,rw and fence w,w, respectively.

A direct mapping of ARMv8 atomics that maps unordered instructions to unordered instructions,
RCpc instructions to RCpc instructions, and RCsc instructions to RCsc instructions is likely to
work in the majority of cases. Mapping even unordered load-reserved instructions onto lr.aq

(particularly for LR/SC pairs without internal data dependencies) is an even safer bet, as this
ensures C/C++ release sequences will be respected. However, due to a subtle mismatch between
the two models, strict theoretical compatibility with the ARMv8 memory model requires that a
naive mapping translate all ARMv8 store conditional and load-acquire operations map onto RISC-
V RCsc operations. Any atomics which are naively ported into RCsc operations may revert back
to the straightforward mapping if the programmer can verify that the code is not relying on an
ordering from the store-conditional to the load-acquire (as this is not common).

The Linux fences smp mb(), smp wmb(), smp rmb() map onto fence rw,rw, fence w,w, and fence

r,r, respectively. The fence smp read barrier depends() map to a no-op due to preserved pro-
gram order rules 8–10. The Linux fences dma rmb() and dma wmb() map onto fence r,r and fence

w,w, respectively, since the RISC-V Unix Platform requires coherent DMA. The Linux fences rmb(),
wmb(), and mb() map onto fence ri,ri, fence wo,wo, and fence rwio,rwio, respectively.

C/C++ Construct RVWMO Mapping

Non-atomic load l{b|h|w|d}
atomic load(memory order relaxed) l{b|h|w|d}
atomic load(memory order acquire) l{b|h|w|d}; fence r,rw

atomic load(memory order seq cst) fence rw,rw; l{b|h|w|d}; fence r,rw

Non-atomic store s{b|h|w|d}
atomic store(memory order relaxed) s{b|h|w|d}
atomic store(memory order release) fence rw,w; s{b|h|w|d}
atomic store(memory order seq cst) fence rw,rw; s{b|h|w|d}
atomic thread fence(memory order acquire) fence r,rw

atomic thread fence(memory order release) fence rw,w

atomic thread fence(memory order acq rel) fence.tso

atomic thread fence(memory order seq cst) fence rw,rw

Table 2.1: Mappings from C/C++ primitives to RISC-V primitives.

The C11/C++11 memory order * primitives should be mapped as shown in Table 2.1. The
memory order acquire orderings in particular must use fences rather than atomics to ensure that
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release sequences behave correctly even in the presence of amoswap. The memory order release

mappings may use .rl as an alternative.

Ordering Annotation Fence-based Equivalent

l{b|h|w|d|r}.aq l{b|h|w|d|r}; fence r,rw

l{b|h|w|d|r}.aqrl fence rw,rw; l{b|h|w|d|r}; fence r,rw

s{b|h|w|d|c}.rl fence rw,w; s{b|h|w|d|c}
s{b|h|w|d|c}.aqrl fence rw,w; s{b|h|w|d|c}
amo<op>.aq amo<op>; fence r,rw

amo<op>.rl fence rw,w; amo<op>

amo<op>.aqrl fence rw,rw; amo<op>; fence rw,rw

Table 2.2: Mappings from .aq and/or .rl to fence-based equivalents. An alternative mapping
places a fence rw,rw after the existing s{b|h|w|d|c} mapping rather than at the front of the
l{b|h|w|d|r} mapping.

It is also safe to translate any .aq, .rl, or .aqrl annotation into the fence-based snippets of
Table 2.2. These can also be used as a legal implementation of l{b|h|w|d} or s{b|h|w|d} pseu-
doinstructions for as long as those instructions are not added to the ISA.

2.7 Implementation Guidelines

The RVWMO and RVTSO memory models by no means preclude microarchitectures from employ-
ing sophisticated speculation techniques or other forms of optimization in order to deliver higher
performance. The models also do not impose any requirement to use any one particular cache
hierarchy, nor even to use a cache coherence protocol at all. Instead, these models only specify the
behaviors that can be exposed to software. Microarchitectures are free to use any pipeline design,
any coherent or non-coherent cache hierarchy, any on-chip interconnect, etc., as long as the design
satisfy the memory model rules. That said, to help people understand the actual implementations
of the memory model, in this section we provide some guidelines below on how architects and
programmers should interpret the models’ rules.

Both RVWMO and RVTSO are multi-copy atomic (or “other-multi-copy-atomic”): any store value
which is visible to a hart other than the one that originally issued it must also be conceptually
visible to all other harts in the system. In other words, harts may forward from their own previous
stores before those stores have become globally visible to all harts, but no other early intra-hart
forwarding is permitted. Multi-copy atomicity may be enforced in a number of ways. It might
hold inherently due to the physical design of the caches and store buffers, it may be enforced
via a single-writer/multiple-reader cache coherence protocol, or it might hold due to some other
mechanism.

Although multi-copy atomicity does impose some restrictions on the microarchitecture, it is one of
the key properties keeping the memory model from becoming extremely complicated. For example,
a hart may not legally forward a value from a neighbor hart’s private store buffer, unless those two
harts are the only two in the system. Nor may a cache coherence protocol forward a value from one
hart to another until the coherence protocol has invalidated all older copies from other caches. Of
course, microarchitectures may (and high-performance implementations likely will) violate these



29

rules under the covers through speculation or other optimizations, as long as any non-compliant
behaviors are not exposed to the programmer.

As a rough guideline for interpreting the PPO rules in RVWMO, we expect the following from the
software perspective:

• programmers will use PPO rules 1–7 regularly and actively.

• expert programmers will use PPO rules 8–10 to speed up critical paths of important data
structures.

• even expert programmers will rarely if ever use PPO rules 11–16 directly. These are included
to facilitate common microarchitectural optimizations (rule 12) and the operational formal
modeling approach (rules 11 and 13–16) described in Chapter 3.3. They also facilitate the
process of porting code from other architectures which have similar rules.

We also expect the following from the hardware perspective:

• PPO rules 1–4 and 6–7 reflect well-understood rules that should pose few surprises to archi-
tects.

• PPO rule 5 may not be immediately obvious to architects, but is somewhat standard never-
theless

• The load value axiom, the atomicity axiom, and PPO rules 8–10 and 13–16 reflect rules that
most hardware implementations will enforce naturally, unless they contain extreme optimiza-
tions. Of course, implementations should make sure to double check these rules nevertheless.
Hardware must also ensure that syntactic dependencies are not “optimized away”.

• PPO rule 11 is not obvious, but it is necessary to avoid certain out-of-thin-air-like behavior
that appears with store-conditional success values

• PPO rule 12 reflects a natural and common hardware optimization, but one that is very
subtle and hence is worth double checking carefully.

Architectures are free to implement any of the memory model rules as conservatively as they choose.
For example, a hardware implementation may choose to do any or all of the following:

• interpret all fences as if they were fence rw,rw (or fence iorw,iorw, if I/O is involved),
regardless of the bits actually set

• implement all fences with .pw and .sr as if they were fence rw,rw (or fence iorw,iorw, if
I/O is involved), as “w,r” is the most expensive of the four possible normal memory orderings
anyway

• ignore any addresses passed to a fence instruction and simply implement the fence for all
addresses

• implement an instruction with .aq set as being preceded immediately by fence r,rw
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• implement an instruction with .rl set as being succeeded immediately by fence rw,w

• enforcing all same-address load-load ordering, even in the presence of patterns such as “fri-rfi”
and “RSW”

• forbid any forwarding of a value from a store in the store buffer to a subsequent AMO or lr
to the same address

• forbid any forwarding of a value from an AMO or sc in the store buffer to a subsequent load
to the same address

• implement TSO on all memory accesses, and ignore any normal memory fences that do not
include “w,r” ordering

• implement all atomics to be RCsc; i.e., always enforce all store-release-to-load-acquire ordering

Architectures which implement RVTSO can safely do the following:

• Ignore all .aq and .rl bits, since these are implicitly always set under RVTSO. (.aqrl cannot
be ignored, however, due to PPO rules 5–7.)

• Ignore all fences which do not have both .pw and .sr (unless the fence also orders I/O)

• Ignore PPO rules 1 and 8–16, since these are redundant with other PPO rules under RVTSO
assumptions

Other general notes:

• Silent stores (i.e., stores which write the same value that already exists at a memory location)
do not have any special behavior from a memory model point of view. Microarchitectures
that attempt to implement silent stores must take care to ensure that the memory model is
still obeyed, particularly in cases such as RSW (Chapter 2.3.7) which tend to be incompatible
with silent stores.

• Writes may be merged (i.e., two consecutive writes to the same address may be merged) or
subsumed (i.e., the earlier of two back-to-back writes to the same address may be elided) as
long as the resulting behavior does not otherwise violate the memory model semantics.

The question of write subsumption can be understood from the following example:

Hart 0 Hart 1

li t1, 3 li t3, 2

li t2, 1

(a) sw t1,0(s0) (d) lw a0,0(s1)

(b) fence w, w (e) sw a0,0(s0)

(c) sw t2,0(s1) (f) lw t3,0(s0)

(picture coming soon)

Figure 2.22: Write subsumption litmus test

As written, (a) must follow (f) in the global memory order:
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• (a) follows (c) in the global memory order because of rule 2

• (c) follows (d) in the global memory order because of the Load Value axiom

• (d) follows (e) in the global memory order because of rule 7

• (e) follows (f) in the global memory order because of rule 1

A very aggressive microarchitecture might erroneously decide to discard (e), as (f) supersedes it,
and this may in turn lead the microarchitecture to break the now-eliminated dependency between
(d) and (f) (and hence also between (a) and (f)). This would violate the memory model rules, and
hence it is forbidden. Write subsumption may in other cases be legal, if for example there were no
data dependency between (d) and (e).

2.8 Summary of New/Modified ISA Features

At a high level, PPO rules 5, 11, and 13–16 are all new rules that did not exist in the original ISA
spec. Rule 12 and the specifics of the atomicity axiom were addressed but not stated in detail.

Other new or modified ISA details:

• There is an RCpc (.aq and .rl) vs. RCsc (.aqrl) distinction

• Load-release and store-acquire are deprecated

• lr/sc behavior was clarified

2.8.1 Possible Future Extensions

We expect that any or all of the following possible future extensions would be compatible with the
RVWMO memory model:

• ‘V’ vector ISA extensions

• A transactional memory subset of the ‘T’ ISA extension

• ‘J’ JIT extension

• Native encodings for l{b|h|w|d}.aq/s{b|h|w|d}.rl

• Fences limited to certain addresses

• Cache writeback/flush/invalidate/etc. hints, but these should be considered hints, not func-
tional requirements. Any cache management operations which are required for basic cor-
rectness should be described as (possibly address range-limited) fences to comply with the
RISC-V philosophy (see also fence.i and sfence.vma). For example, a functional cache
writeback instruction might instead be written as “fence rw[addr],w[addr]”.
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2.9 Litmus Tests

These litmus tests represent some of the better-known litmus tests in the field, plus some tests
that are randomly-generated, plus some tests that are generated to be particularly relevant to the
RVWMO memory model.

All will be made available for download once they are generated.

We expect that these tests will one day serve as part of a compliance test suite, and we expect that
many architects will use them for verification purposes as well.

COMING SOON!



Chapter 3

Formal Memory Model Specifications

To facilitate formal analysis of RVWMO, we present a set of formalizations in this chapter. Any
discrepancies are unintended; the expectation is that the models will describe exactly the same
sets of legal behaviors, pending some memory model changes that have not quite been added to
all of the formalizations yet.

As such, these formalizations should be considered snapshots from some point in time during
the development process rather than finalized specifications.

At this point, no individual formalization is considered authoritative, but we may designate
one as such in collaboration with the ISA specification and/or formalization task groups.

3.1 Formal Axiomatic Specification in Alloy

We present two formal specifications of the RVWMO memory model in Alloy (http://alloy.mit.
edu).

The first corresponds directly to the natural language model earlier in this chapter.
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// //////////////////////////////////////////////////////////////////////////////

// =RISC -V RVWMO axioms=

// Preserved Program Order

fun ppo : Event ->Event {

// same -address ordering

po_loc :> Store

// explicit synchronization

+ ppo_fence

+ Load.aq <: ^po

+ ^po :> Store.rl

+ Store.aq.rl <: ^po :> Load.aq.rl

+ ^po :> Load.sc

+ Store.sc <: ^po

// dependencies

+ addr

+ data

+ ctrl :> Store

+ (addr+data). successdep

// CoRR

+ rdw & po_loc_no_intervening_write

// pipeline dependency artifacts

+ (addr+data).rfi

+ addr.^po :> Store

+ ctrl.( FenceI <: ^po)

+ addr.^po.( FenceI <: ^po)

}

// the global memory order respects preserved program order

fact { ppo in gmo }

Figure 3.1: The RVWMO memory model formalized in Alloy (1/4: PPO)
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// Load value axiom

fun candidates[r: Load] : set Store {

(r.~gmo & Store & same_addr[r]) // writes preceding r in gmo

+ (r.^~po & Store & same_addr[r]) // writes preceding r in po

}

fun latest_among[s: set Event] : Event { s - s.~gmo }

pred LoadValue {

all w: Store | all r: Load |

w->r in rf <=> w = latest_among[candidates[r]]

}

fun after_reserve_of[r: Load] : Event { latest_among[r + r.~rf].gmo }

pred Atomicity {

all r: Store.~rmw | // starting from the read r of an atomic ,

no x: Store & same_addr[r + r.rmw] | // there is no write x to the same addr

x not in same_hart[r] // from a different hart , such that

and x in after_reserve_of[r] // x follows (the write r reads from) in gmo

and r.rmw in x.gmo // and r follows x in gmo

}

pred RISCV_mm { LoadValue and Atomicity }

Figure 3.2: The RVWMO memory model formalized in Alloy (2/4: Axioms)
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// //////////////////////////////////////////////////////////////////////////////

// Basic model of memory

sig Hart { // hardware thread

start : one Event

}

sig Address {}

abstract sig Event {

po: lone Event // program order

}

abstract sig MemoryEvent extends Event {

address: one Address ,

aq: lone MemoryEvent , // opcode bit

rl: lone MemoryEvent , // opcode bit

sc: lone MemoryEvent , // for AMOs with .aq and .rl, to distinguish from lr/sc

gmo: set MemoryEvent // global memory order

}

sig Load extends MemoryEvent {

addr: set Event ,

ctrl: set Event ,

data: set Store ,

successdep: set Event ,

rmw: lone Store

}

sig Store extends MemoryEvent {

rf: set Load

}

sig Fence extends Event {

pr: lone Fence , // opcode bit

pw: lone Fence , // opcode bit

sr: lone Fence , // opcode bit

sw: lone Fence // opcode bit

}

sig FenceI extends Event {}

// FENCE PPO

fun FencePRSR : Fence { Fence.(pr & sr) }

fun FencePRSW : Fence { Fence.(pr & sw) }

fun FencePWSR : Fence { Fence.(pw & sr) }

fun FencePWSW : Fence { Fence.(pw & sw) }

fun ppo_fence : MemoryEvent ->MemoryEvent {

(Load <: ^po :> FencePRSR ).(^po :> Load)

+ (Load <: ^po :> FencePRSW ).(^po :> Store)

+ (Store <: ^po :> FencePWSR ).(^po :> Load)

+ (Store <: ^po :> FencePWSW ).(^po :> Store)

}

Figure 3.3: The RVWMO memory model formalized in Alloy (3/4: model of memory)
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// auxiliary definitions

fun po_loc_no_intervening_write : MemoryEvent ->MemoryEvent {

po_loc - (( po_loc :> Store ). po_loc)

}

fun RFInit : Load { Load - Store.rf }

fun rsw : Load ->Load { ~rf.rf + (RFInit <: address .~ address :> RFInit) }

fun rdw : Load ->Load { (Load <: po_loc :> Load) - rsw }

fun po_loc : Event ->Event { ^po & address .~ address }

fun same_hart[e: Event] : set Event { e + e.^~po + e.^po }

fun same_addr[e: Event] : set Event { e.address .~ address }

// basic facts about well -formed execution candidates

fact { acyclic[po] }

fact { all e: Event | one e.*~po.~start } // each event is in exactly one hart

fact { rf.~rf in iden } // each read returns the value of only one write

fact { total[gmo , MemoryEvent] } // gmo is a total order over all MemoryEvents

//rf

fact { rf in address .~ address }

fun rfi : Store ->Load { Store <: po_loc_no_intervening_write :> Load }

//dep

fact { addr + ctrl + data in ^po }

fact { successdep in (Write .~rmw) <: ^po }

fact { ctrl.*po in ctrl }

fact { rmw in ^po }

// //////////////////////////////////////////////////////////////////////////////

// =Opcode encoding restrictions=

// opcode bits are either set (encoded , e.g., as f.pr in iden) or unset

// (f.pr not in iden). The bits cannot be used for anything else

fact { pr + pw + sr + sw + aq + rl + sc in iden }

fact { sc in aq + rl }

fact { Load.sc.rmw in Store.sc and Store.sc.~rmw in Load.sc }

// Fences must have either pr or pw set , and either sr or sw set

fact { Fence in Fence .(pr + pw) & Fence .(sr + sw) }

// there is no write -acquire , but there is write -strong -acquire

fact { Store & Acquire in Release }

fact { Load & Release in Acquire }

// //////////////////////////////////////////////////////////////////////////////

// =Alloy shortcuts=

pred acyclic[rel: Event ->Event] { no iden & ^rel }

pred total[rel: Event ->Event , bag: Event] {

all disj e, e’: bag | e->e’ in rel + ~rel

acyclic[rel]

}

Figure 3.4: The RVWMO memory model formalized in Alloy (4/4: Auxiliaries)
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The second is an equivalent formulation which is slightly more complex but which is more compu-
tationally efficient. We expect that analysis tools will be built off of this second formulation. Also
included are empirical checks that the two models match.

This formulation, however, does not apply when mixed-size accesses are used, nor when lr/sc to
different addresses are used.

// coherence order: a total order on the writes to each address

fun co : Write ->Write { Write <: (( address .~ address) & gmo) :> Write }

// from -read: from a read to the coherence successors of the rf-source of the write

fun fr : Read ->Write { ~rf.co + ((Read - Write.rf) <: address .~ address :> Write) }

// e = external; i.e., from a different hart

fun rfe : Store ->Load { rf - iden - ^po - ^~po }

fun coe : Store ->Store { co - iden - ^po - ^~po }

fun fre : Load ->Store { fr - iden - ^po - ^~po }

pred sc_per_location { acyclic[rf + co + fr + po_loc] }

pred atomicity { no rmw & fre.coe }

pred causality { acyclic[rfe + co + fr + ppo] }

// equality checks

run RISCV_mm_com_sanity { RISCV_mm_com } for 3

check RISCV_mm_gmo_com { RISCV_mm => RISCV_mm_com } for 6

check RISCV_mm_com_gmo {

rmw in address .~ address => // the rf/co/fr model assumes rmw in same addr

RISCV_mm_com =>

rfe + co + fr in gmo => // pick a gmo which matches rfe+co+fr

RISCV_mm

} for 6

Figure 3.5: An alternative, more computationally efficient but less complete axiomatic definition
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3.2 Formal Axiomatic Specification in Herd

See also: http://moscova.inria.fr/~maranget/cats7/riscv

(This herd model is not yet updated to account for rules 6–7 and 11, and rule r4 has been tentatively
removed from RVWMO. Updates to come...)

http://moscova.inria.fr/~maranget/cats7/riscv
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(*************)

(* Utilities *)

(*************)

let fence.r.r = [R]; fencerel(Fence.r.r);[R]

let fence.r.w = [R]; fencerel(Fence.r.w);[W]

let fence.r.rw = [R]; fencerel(Fence.r.rw);[M]

let fence.w.r = [W]; fencerel(Fence.w.r);[R]

let fence.w.w = [W]; fencerel(Fence.w.w);[W]

let fence.w.rw = [W]; fencerel(Fence.w.rw);[M]

let fence.rw.r = [M]; fencerel(Fence.rw.r);[R]

let fence.rw.w = [M]; fencerel(Fence.rw.w);[W]

let fence.rw.rw = [M]; fencerel(Fence.rw.rw);[M]

let fence =

fence.r.r | fence.r.w | fence.r.rw |

fence.w.r | fence.w.w | fence.w.rw |

fence.rw.r | fence.rw.w | fence.rw.rw

let po -loc -no -w = po -loc \ (po -loc;[W];po -loc)

let rsw = rf^-1;rf

let LD -ACQ = R & (Acq|AcqRel)

and ST -REL = W & (Rel|AcqRel)

(*************)

(* ppo rules *)

(*************)

let r1 = [M];po -loc;[W]

and r2 = fence

and r3 = [LD -ACQ];po;[M]

and r4 = [R];po -loc;[LD -ACQ]

and r5 = [M];po;[ST -REL]

and r6 = [W & AcqRel ];po;[R & AcqRel]

and r7 = [R];addr;[M]

and r8 = [R];data;[W]

and r9 = [R];ctrl;[W]

and r10 = ([R];po -loc -no -w;[R]) \ rsw

and r11 = [R];( addr|data );[W];po -loc -no -w;[R]

and r12 = [R];addr;[M];po;[W]

and r13 = [R];ctrl;[ Fence.i];po;[R]

and r14 = [R];addr;[M];po;[ Fence.i];po;[M]

let ppo =

r1

| r2

| r3

| r4

| r5

| r6

| r7

| r8

| r9

| r10

| r11

| r12

| r13

| r14

Figure 3.6: riscv-defs.cat, part of a herd version of the RVWMO memory model (1/3)
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Total

(* Notice that herd has defined its own rf relation *)

(* Define ppo *)

include "riscv -defs.cat"

(********************************)

(* Generate global memory order *)

(********************************)

let gmo0 = (* precursor: ie build gmo as an total order that include gmo0 *)

loc & (W\FW) * FW | # Final write before any write to the same location

ppo | # ppo compatible

rfe # first half of

(* Walk over all linear extensions of gmo0 *)

with gmo from linearisations(M\IW,gmo0)

(* Add initial writes upfront -- convenient for computing rfGMO *)

let gmo = gmo | loc & IW * (M\IW)

(**********)

(* Axioms *)

(**********)

(* Compute rf according to the load value axiom , aka rfGMO *)

let WR = loc & ([W];( gmo|po);[R])

let rfGMO = WR \ (loc &([W];gmo);WR)

(* Check equality of herd rf and of rfGMO *)

empty (rf\rfGMO )|( rfGMO\rf) as RfCons

(* Atomic axion *)

let infloc = (gmo & loc)^-1

let inflocext = infloc & ext

let winside = (infloc;rmw;inflocext) & (infloc;rf;rmw;inflocext) & [W]

empty winside as Atomic

Figure 3.7: riscv.cat, a herd version of the RVWMO memory model (2/3)
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Partial

(***************)

(* Definitions *)

(***************)

(* Define ppo *)

include "riscv -defs.cat"

(* Compute coherence relation *)

include "cos -opt.cat"

(**********)

(* Axioms *)

(**********)

(* Sc per location *)

acyclic co|rf|fr|po -loc as Coherence

(* Main model axiom *)

acyclic co|rfe|fr|ppo as Model

(* Atomicity axiom *)

empty rmw & (fre;coe) as Atomic

Figure 3.8: riscv.cat, part of an alternative herd presentation of the RVWMO memory model
(2/3)
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3.3 Formal Operational Specification

An interactive operational model is described in the pages that follow, and can be explored via a
web app at the following URL: http://www.cl.cam.ac.uk/~sf502/RISCV/rmem.

(This operational model is not yet updated to account for rules 6–7 and 11, and the model is
slightly too conservative in how it implements load-acquire operations compared to the current
natural language specification of RVWMO. Updates to come...).

http://www.cl.cam.ac.uk/~sf502/RISCV/rmem


The “Flat” RISC-V Operational Model
Christopher Pulte, Shaked Flur, Susmit Sarkar and Peter Sewell

October 2, 2017

1 Operational Model
An interactive version of the model, together with a library of litmus tests, is provided online:
http://www.cl.cam.ac.uk/~pes20/rmem

To help reading this section the text is colour-coded as follows:

• [ .aq/.rl ] Acquire/Release semantics
• [ atomic ] Atomics (AMOs and LR/SC) semantics

In the following text, load means any instruction that performs a memory read (including
AMOs), and store means any instruction that performs a memory write (including AMOs).
load-acquire means any load that has .aq set (including load-acquire-RCsc), and store-release
means any store that has .rl set (including store-release-RCsc).

1.1 Overview of the Model
The operational model is expressed as a state machine, with states that are an abstract repre-
sentation of hardware machine states.

Model states A model state consists of a shared memory and a tuple of thread model states:

Shared Memory

Thread 0 Thread n. . .

. . .

The shared memory state records the most recent write to each location. To handle LR/SC
and AMOs, the memory is extended with a map (the atomics map) from read requests to sets
of write slices, that associates a read request of an atomic load with the write slices it read from
(excluding writes that have been forwarded to the read and have not reached memory yet).

Each thread model state (§1.4) consists principally of a tree of instruction instances, some of
which have been finished, and some of which have not. Non-finished instruction instances can
be subject to restart, e.g. if they depend on an out-of-order or speculative read that turns out
to be unsound. The load part of AMOs can be marked as finished before the entire instruction
is finished; when such instruction is restarted it is rolled back to the state it was in when the
load part was marked as finished. Conditional branch instructions and JALR may have multiple
successors in the instructions tree. When such instruction is finished, any un-taken alternative
paths are discarded.

Each instruction instance state (§1.3) includes an execution state of the instruction’s ISA
pseudocode, which one can think of as a representation of the pseudocode control state, pseu-
docode call stack, and local variable values. An instruction instance state also includes infor-
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mation, detailed below, about the instruction instance’s memory and register footprints, its
register and memory reads and writes, whether it is finished, etc.

Model transitions For any state, the model defines the set of allowed transitions, each of which
is a single atomic step to a new abstract machine state. Each transition arises from a single
instruction instance; it will change the state of that instance, and it may depend on or change
the rest of its thread state and the shared memory state. The transitions are introduced below
and defined in §1.5, with a precondition and a construction of the post-transition model state
for each. The transitions labelled ◦ can always be taken eagerly, as soon as they are enabled,
without excluding other behaviour; the • cannot.
Transitions for all instructions:

• Fetch instruction: This transition represents a fetch and decode of a new instruction
instance, as a program-order successor of a previously fetched instruction instance, or at
the initial fetch address for a thread.

◦ Register read: This is a read of a register value from the most recent program-order
predecessor instruction instance that writes to that register.

◦ Register write
◦ Pseudocode internal step: This covers pseudocode internal computation, function calls,
etc.

◦ Finish instruction: At this point the instruction pseudocode is done, the instruction cannot
be restarted or discarded, and all memory effects have taken place. For a conditional
branches and JALR, any non-taken po-successor branches are discarded.

Load instructions:

◦ Initiate memory reads of load instruction: At this point the memory footprint of the load
is provisionally known and its individual reads can start being satisfied.

• Satisfy memory read by forwarding from writes: This partially or entirely satisfies a single
read by forwarding from its po-previous writes.

• Satisfy memory read from memory: This entirely satisfies the outstanding slices of a single
read, from memory.

◦ Complete load instruction (when all its reads are entirely satisfied): At this point all
the reads of the load have been entirely satisfied and the instruction pseudocode can
continue execution. A load instruction can be subject to being restarted until the Finish
instruction transition or Finish load part of AMO instruction. In some cases it is possible
to tell that a load instruction will not be restarted or discarded before that, e.g. when
all the instructions po-before the load instruction are finished. The Restart condition
over-approximates the set of instructions that might be restarted.

Store instructions:

◦ Initiate memory writes of store instruction, with their footprints: At this point the memory
footprint of the store is provisionally known.

◦ Instantiate memory write values of store instruction: At this point the writes have their
values and po-subsequent reads can be satisfied by forwarding from them.

◦ Commit store instruction: At this point the store is guaranteed to happen (it cannot be
restarted or discarded), and the writes can start being propagated to memory.

• Propagate memory write: This propagates a single write to memory.
◦ Complete store instruction (when its writes are all propagated): At this point all writes
have been propagated to memory, and the instruction pseudocode can continue execution.

SC instructions:

• Guarantee the success of SC: This guarantees the success of the SC.

2



• Make a SC fail: This makes the SC fail.

AMO instructions:

◦ Finish load part of AMO instruction: At this point the load part of an AMO instruction
is done, the load part cannot be restarted or discarded, and all memory read effects
have taken place. If the AMO instruction is restarted after the transition is taken, the
instruction rolls back to its state right after the transition.

Fence instructions:

◦ Commit fence

1.2 Intra-instruction Pseudocode Execution
The intra-instruction semantics for each instruction instance is expressed as a state machine,
essentially running the instruction pseudocode. Given a pseudocode execution state, it computes
the next state, as one of the following:

Read_mem(read_kind, address, size, read_continuation) Load request
Atomic_res(res_continuation) SC result
Write_ea(write_kind, address, size, next_state) Store effective address
Write_memv(memory_value, write_continuation) Store value
Fence(fence_kind, next_state) Fence
Read_reg(reg_name, read_continuation) Register read request
Write_reg(reg_name, register_value, next_state) Register write
Internal(next_state) Pseudocode internal step
Done End of pseudocode

Here memory values are lists of bytes, addresses are 64-bit numbers, read and write kinds
identify whether they are regular, atomic, acquire, acquire-RCsc, release and/or release-RCsc
operations, register names identify a register and slice thereof (start and end bit indices), and
the continuations describe how the instruction instance will continue for each value that might
be provided by the surrounding memory model. Stores are split into two steps, Write_ea and
Write_memv. We ensure these are paired in the pseudocode, but there may be other steps
between them: it is observable that the Write_ea can occur before the value to be written
is determined, because the potential memory footprint of the instruction becomes provisionally
known then.

The pseudocode of each instruction performs at most one store, load, or fence, except for
AMOs that preform exactly one load and one store. Those memory accesses are then split apart
into the architecturally atomic units by the thread semantics (see Initiate memory reads of load
instruction and Initiate memory writes of store instruction, with their footprints below).

Informally, each bit of a register read should be satisfied from a register write by the most
recent (in program order) instruction instance that can write that bit, or from the thread’s
initial register state if there is no such. That instance may not have executed its register write
yet, in which case the register read should block. Hence, it is essential to know the register
write footprint of each instruction instance, which we calculate when the instruction instance
is created (see the action of Fetch instruction below). We ensure in the pseudocode that each
instruction does at most one register write to each register bit, and also that it does not try to
read a register value it just wrote.

Data-flow dependencies in the model emerge from the fact that register read has to wait for
the appropriate register write to be executed (as described above).
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1.3 Instruction Instance States
Each instruction instance i has a state comprising:

• program_loc, the memory address from which the instruction was fetched;
• instruction_kind, identifying whether this is a load, store, rmw (i.e. AMO), or fence in-
struction, each with the associated kind; or a conditional branch; or a ‘simple’ instruction.

• regs_in, the set of input reg_names, as statically determined;
• regs_out, the output reg_names, as statically determined;
• pseudocode_state (or sometimes just ‘state’ for short), one of

– Plain next_state, ready to make a pseudocode transition;
– Pending_mem_reads read_cont, performing the memory read(s) of a load; or
– Pending_mem_writes write_cont, performing the memory write(s) of a store;
– Pending_exception exception, performing an exception;

• reg_reads, the accumulated register reads, including their sources and values, of this in-
stance’s execution so far;

• reg_writes, the accumulated register writes, including dependency information to identify
the register reads and memory reads (by this instruction) that might have affected each;

• mem_reads, a set of memory read requests. Each request includes a memory footprint
(an address and size) and, if the request has already been satisfied, the set of write slices
(each consisting of a write and a set of its byte indices) that satisfied it.

• mem_writes, a set of memory write requests. Each request includes a memory footprint
and, when available, the memory value to be written. In addition, each write has a flag
that indicates whether the write has been propagated (passed to the memory) or not.

• [ atomic ] successful_atomic, for SC, indicates whether it was previously guaranteed to succeed
or made to fail; for AMOs this will always be set to true.

• information recording whether the instance is committed, finished, etc.

Read requests include their read kind and their memory footprint (their address and size),
the as-yet-unsatisfied slices (the byte indices that have not been satisfied), and, for the satisfied
slices, information about the write(s) that they were satisfied from. Write requests include
their write kind, their memory footprint, and their value. When we refer to a write or read
request without mentioning the kind of request we mean the request can be of any kind. A
load instruction which has initiated (so its read request list mem_reads is not empty) and for
which all its read requests are satisfied (i.e. there are no unsatisfied slices) is said to be entirely
satisfied. A LR is called successful if it is paired with a SC that has been guaranteed to succeed
(as opposed to not paired, or the SC has not been guaranteed to succeed, or the SC has made to
fail). If a successful LR has a read request that is mapped, in the atomics map, to a write slice
ws, we say the LR has an outstanding lock on ws.

1.4 Thread States
The model state of a single hardware thread includes:

• thread_id, a unique identifier of the thread;
• register_data, the name, bit width, and start bit index for each register;
• initial_register_state, the initial register value for each register;
• initial_fetch_address, the initial fetch address for this thread;
• instruction_tree, a tree of the instruction instances that have been fetched (and not dis-
carded), in program order.
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1.5 Model Transitions

Fetch instruction A possible program-order successor of instruction instance i can be fetched
from address loc if:

1. it has not already been fetched, i.e., none of the immediate successors of i in the thread’s
instruction_tree are from loc; and

2. loc is a possible next fetch address for i:
(a) for a non-branch/jump instruction, the successor instruction address (i.program_loc+4 );
(b) for an instruction that has performed a write to the program counter register (PC),

the value that was written;
(c) for a conditional branch, either the successor address or the branch target address;

or
(d) for JALR, when the target address is not yet determined, any address (this is approx-

imated in our tool implementation, necessarily);

Action: construct a freshly initialized instruction instance i ′ for the instruction in the program
memory at loc, with state Plain next_state, including the static information available from
the ISA model such as its instruction_kind, regs_in, and regs_out, and add i ′ to the thread’s
instruction_tree as a successor of i. If the instruction fails to decode, set the state of i ′ to
Pending_exception exception with exception that describes the decoding error.

This involves only the thread, not the storage subsystem, as we assume a fixed program
rather than modelling fetches with memory reads; we do not model self-modifying code.

Initiate memory reads of load instruction An instruction instance i with next pseudocode state
Read_mem(read_kind, address, size, read_cont) can initiate the corresponding memory reads
if:

1. all po-previous fence instructions with .sr set are finished;
2. all po-previous fence.i instructions are finished;
3. [ .aq/.rl ] if i is a load-acquire-RCsc, all po-previous store-releases-RCsc are finished; and
4. [ .aq/.rl ] all non-finished po-previous load-acquire instructions are entirely satisfied.

Action:

1. Construct the appropriate read requests rrs:
• if address is aligned to size then rrs is a single read request of size bytes from address;
• otherwise, rrs is a set of size read requests, each of one byte, from the addresses
address. . .address+size-1.

2. set i.mem_reads to rrs; and
3. update the state of i to Pending_mem_reads read_cont.

Satisfy memory read by forwarding from writes For a load instruction instance i in state
Pending_mem_reads read_cont, and a read request, r in i.mem_reads that has unsatisfied
slices, the read request can be partially or entirely satisfied by forwarding from unpropagated
writes by store instruction instances that are po-before i.

Let wss be the maximal set of unpropagated write slices from store instruction instances
po-before i (if i is a load-acquire, exclude SC and AMO writes), that overlap with the unsatisfied
slices of r, and which are not superseded by intervening stores that are either propagated or read
from by this thread. That last condition requires, for each write slice ws in wss from instruction
i ′:

• that there is no store instruction po-between i and i ′ with a write overlapping ws, and
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• that there is no load instruction po-between i and i ′ that was satisfied from an overlapping
write slice from a different thread.

Action:

1. update r to indicate that it was satisfied by wss; and
2. restart any speculative instructions which have violated coherence as a result of this, i.e.,

for every non-finished instruction i ′ that is a po-successor of i, and every read request
r ′ of i ′ that was satisfied from wss ′, if there exists a write slice ws ′ in wss ′, and an
overlapping write slice from a different write in wss, and ws ′ is not from an instruction
that is a po-successor of i, restart i ′ and its data-flow dependents (including po-successors
of restarted load-acquire instructions).

A consequence of the above is that store-release-RCsc writes cannot be forwarded to load-
acquires-RCsc: a load-acquire-RCsc instruction cannot be in state Pending_mem_reads
read_cont before all the po-previous store-release-RCsc instructions are finished, and wss does
not include writes from finished stores (as those must be propagated writes).

Satisfy memory read from memory For a load instruction instance i in state Pending_mem_reads
read_cont, and a read request r in i.mem_reads, that has unsatisfied slices, the read request
can be satisfied from memory under the condition that if i is an AMO or a successful LR then
no other AMO or successful LR from a different thread has an outstanding lock on the writes r
is trying to read from. Action: let wss be the write slices from memory covering the unsatisfied
slices of r, and apply the action of Satisfy memory read by forwarding from writes. In addition,
if i is an AMO or a successful LR, union wss with the set of write slices r is mapped to in the
atomics map.

Note that Satisfy memory read by forwarding from writes might leave some slices of the
read request unsatisfied. Satisfy memory read from memory, on the other hand, will always
satisfy all the unsatisfied slices of the read request.

Complete load instruction (when all its reads are entirely satisfied) A load instruction instance
i in state Pending_mem_reads read_cont can be completed (not to be confused with finished)
if all the read requests i.mem_reads are entirely satisfied (i.e., there are no unsatisfied slices).
Action: update the state of i to Plain (read_cont (memory_value)), where memory_value is
assembled from all the write slices that satisfied i.mem_reads.

Finish load part of AMO instruction An AMO instruction instance i that has completed the
load part, i.e., Complete load instruction (when all its reads are entirely satisfied) has been
taken, can be marked as such if the conditions of Finish instruction are satisfied, except for the
fully determined data condition for the src register (rs2). Action: mark the load part of i as
finished. If later on i has to be restarted, reset its state to the current state.

Guarantee the success of SC A SC instruction instance i with next pseudocode state Atomic_res(res_cont)
can be guaranteed to succeed if:

1. i has not been made to fail (as recorded in i.successful_atomic);
2. i is paired with a LR i ′; and
3. if i ′ has already been satisfied (not necessarily entirely), let wss be the set of propagated

write slices i ′ has read from, then, no slice in wss has been overwritten (in memory) by a
write from a different thread, and no other AMO or successful LR from a different thread
has an outstanding lock on a write slice from wss.

Action:

1. record in i.successful_atomic that i will be successful;
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2. if i ′ has already been satisfied, union wss with the set of write slices the read request of
i ′ is mapped to in the atomics map, where wss is as above; and

3. update the state of i to Plain (res_cont (true)).

Make a SC fail A SC instruction instance i with next pseudocode state Atomic_res(res_cont)
can be made to fail if the SC has not been guaranteed to succeed (as recorded in i.successful_atomic)
Action:

1. record in i.successful_atomic that the SC was made to fail; and
2. update the state of i to Plain (res_cont (false)).

Note the promise-success transition is enabled before the SC commits, and we do not require it
to have a fully-determined address or to be non-restartable. As a result, a SC that has already
promised its success might be restarted. Since other instructions may rely on its promise,
the restart will not affect the value of i.successful_atomic. Instead, when the SC is restarted
it will take the same promise/failure transition as before its restart — based on the value of
i.successful_atomic.

Initiate memory writes of store instruction, with their footprints An instruction instance i
with next pseudocode state Write_ea(write_kind, address, size, next_state ′) can announce
its pending write footprint. Action:

1. construct the appropriate write requests:
• if address is aligned to size then ws is a single write request of size bytes to address;
• otherwise ws is a set of size write requests, each of one byte size, to the addresses
address. . .address+size-1.

2. set i.mem_writes to ws; and
3. update the state of i to Plain next_state ′.

Note that at this point the write requests do not yet have their values, but other, non-
overlapping po-following writes, can already propagate.

Instantiate memory write values of store instruction An instruction instance i with next
pseudocode state Write_memv(memory_value, write_cont) can initiate the corresponding
memory writes. Action:

1. split memory_value between the write requests i.mem_writes; and
2. update the state of i to Pending_mem_writes write_cont.

Commit store instruction For an uncommitted store instruction i in state Pending_mem_writes
write_cont, i can commit if:

1. i has fully determined data (i.e., the register reads cannot change, see §1.6);
2. all po-previous conditional branch instructions are finished;
3. all po-previous fence instructions with .sw set are finished;
4. all po-previous fence.i instructions are finished;
5. [ .aq/.rl ] all po-previous load-acquire instructions are finished;
6. all po-previous store instructions, except for SC that failed, have initiated and so have

non-empty mem_writes;
7. [ .aq/.rl ] if i is a store-release, all po-previous memory access instructions are finished;
8. all po-previous memory access instructions have a fully determined memory footprint;

and
9. all po-previous load instructions have initiated and so have non-empty mem_reads.
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Action: record i as committed.

Propagate memory write For an instruction i in state Pending_mem_writes write_cont,
and an unpropagated write, w in i.mem_writes, the write can be propagated if:

1. all memory writes of po-previous store instructions that overlap w have already propagated
2. all read requests of po-previous load instructions that overlap with w have already been

satisfied, and (the load instruction) is non-restartable (see §1.6);
3. all read requests satisfied by forwarding w are entirely satisfied; and
4. [ atomic ] no AMO or successful LR from a different thread has an outstanding lock on a write

slice that overlaps with w.

Action:

1. update the memory with w;
2. record w as propagated;
3. restart any speculative instructions which have violated coherence as a result of this, i.e.,

for every non-finished instruction i ′ po-after i and every read request r ′ of i ′ that was
satisfied from wss ′, if there exists a write slice ws ′ in wss ′ that overlaps with w and is not
from w, and ws ′ is not from a po-successor of i, restart i ′ and its data-flow dependents;
and

4. [ atomic ] for every AMO and successful LR that has read from w (by forwarding), add the
slices of w this load read from to the set of write slices the read request of the load is
mapped to in the exclusives map.

Complete store instruction (when its writes are all propagated) A store instruction i in state
Pending_mem_writes write_cont, for which all the memory writes in i.mem_writes have
been propagated, can be completed. Action: update the state of i to Plain(write_cont(true)).

Commit fence A fence instruction i in state Plain next_state where next_state is
Fence(fence_kind, next_state ′) can be committed if:

1. all po-previous conditional branch instructions are finished; [TODO: this looks stronger
than intended, but actually it has no observable effect for most fences; the ex-
ception is “fence w,r”, e.g., MP+fence.w.w+ctrlfence.w.r is allowed by Daniel’s
model but forbidden as a consequence of this condition. Fixing this means
changing the invariant that finished instructions are never discarded, to fin-
ished load/store instructions are never discarded. Is RISC-V going to include
“fence w,r”?]

2. if i is a fence instructions with .pr set, all po-previous load instructions are finished;
3. if i is a fence instructions with .pw set, all po-previous store instructions are finished; and
4. if i is a fence.i instruction, all po-previous memory access instructions have fully deter-

mined memory footprints.

Action: update the state of i to Plain next_state ′.

Register read An instruction instance i with next pseudocode state Read_reg(reg_name,
read_cont) can do a register read if every instruction instance that it needs to read from has
already performed the expected register write.

Let read_sources include, for each bit of reg_name, the write to that bit by the most recent
(in program order) instruction instance that can write to that bit, if any. If there is no such
instruction, the source is the initial register value from initial_register_state. Let register_value
be the assembled value from read_sources. Action:

1. add reg_name to i.reg_reads with read_sources and register_value; and
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2. update the state of i to Plain (read_cont(register_value)).

Register write An instruction instance i with next pseudocode state Write_reg(reg_name,
register_value, next_state ′) can do the register write. Action:

1. add reg_name to i.reg_writes with write_deps and register_value; and
2. update the state of i to Plain next_state ′.

where write_deps is the set of all read_sources from i.reg_reads and a flag that is set to true if
i is a load instruction that has already been entirely satisfied.

Pseudocode internal stepAn instruction instance i with next pseudocode state Internal(next_state ′)
can do that pseudocode-internal step. Action: Update the state of i to Plain next_state ′.

Finish instruction A non-finished instruction i with next pseudocode state Done can be finished
if:

1. if i is a load instruction:
(a) [ .aq/.rl ] all po-previous load-acquire instructions are finished; and
(b) it is guaranteed that the values read by the read requests of i will not cause coherence

violations, i.e., for any po-previous instruction instance i ′, let cfp be the combined
footprint of propagated writes from store instructions po-between i and i ′ and fixed
writes that were forwarded to i from store instructions po-between i and i ′ including
i ′, and let cfp ′ be the complement of cfp in the memory footprint of i. If cfp ′ is not
empty:
i. i ′ has a fully determined memory footprint;
ii. i ′ has no unpropagated memory write that overlaps with cfp ′; and
iii. If i ′ is a load with a memory footprint that overlaps with cfp ′, then all the read

requests of i ′ that overlap with cfp ′ are satisfied and i ′ can not be restarted (see
§1.6).

Here a memory write is called fixed if it is the write of a store instruction that has
fully determined data.

2. i has fully determined data; and
3. all po-previous conditional branches are finished.

Action:

1. if i is a branch instruction, discard any untaken path of execution, i.e., remove any (non-
finished) instructions that are not reachable by the branch taken in instruction_tree; and

2. record the instruction as finished, i.e., set finished to true.

1.6 Auxiliary Definitions

Fully determined Informally, an instruction is said to have fully determined data if the load
instructions feeding its input registers are finished. Similarly, it is said to have fully determined
memory footprint if the load instructions feeding its memory location register are finished.
Formally, we first define the notion of fully determined register write: a register write w, of
instruction i, with the associated write_deps from i.reg_writes is said to be fully determined if
one of the following conditions hold:

1. i is finished (just the load part for AMOs); or
2. the load flag in write_deps is false and every register write in write_deps is fully deter-

mined.
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Now, an instruction i is said to have a fully determined data if all the register writes of
read_sources in i.reg_reads are fully determined; and, i is said to have a fully determined
memory footprint if all the register writes of read_sources in i.reg_reads that are associated
with registers that feed into i’s memory access footprint are fully determined.

Restart condition To determine if instruction i might be restarted we use the following condi-
tion: i is a non-finished instruction and at least one of the following holds,

1. there exists a store instruction s and an unpropagated write w of s such that applying the
action of the Propagate memory write transition to w will result in the restart of i;

2. there exists a non-finished load instruction l and a read request rr of l such that applying
the action of the Satisfy memory read from memory transition to rr will result in the
restart of i (even if rr is already satisfied); or

3. there exists a non-finished instruction i ′ that might be restarted and i is in its data-flow
dependents, or i ′ is a load-acquire.

1.7 AMOSWAP
The pseudocode execution of each instruction is serial (though not atomic). For most in-
structions we were able to find a maximally liberal order of the pseudocode that allows all
intended behaviours. amoswap is an exception, as the order in which the load part and the
store part are executed is observable. If we serialise the load part first, the litmus tests
MP+fence.rw.rw+amoswap-rfi-addr:

Thread 0
ori x5, x0, 1
sw x5, 0(x6) a:W x=1
fence rw, rw
ori x7, x0, 1
sw x7, 0(x8) c:W y=1

fence rw rw

Thread 1
ori x1, x0, 2
amoswap.w x5, x1, (x6) d0:Rres y=1

d1:Wcon y=2

lw x4, 0(x6) e:R y=2
xor x7, x4, x4
add x9, x8, x7
lw x10, 0(x9) f:R x=0

addr

rf
rf

fr

rffr

is forbidden (allowed by the axiomatic model). If we serialise the store part first, the litmus
test MP+fence.rw.rw+data-amoswap-addr:

Thread 0
ori x5, x0, 1
sw x5, 0(x6) a:W x=1
fence rw, rw
ori x7, x0, 1
sw x7, 0(x8) c:W y=1

fence rw rw

Thread 1
lw x5, 0(x6) d:R y=1
xor x1, x5, x5
ori x1, x1, 1
amoswap.w x2, x1, (x3) e0:Rres z=0

e1:Wcon z=1
xor x7, x2, x2
add x9, x8, x7
lw x10, 0(x9) f:R x=0

data

addr

rf rf

rf

fr

fr

is forbidden (allowed by the axiomatic model). Currently, in the rmem tool, the load is serialised
before the store.

1.8 Remarks about LR/SC and AMO instructions
The RISC-V architecture intends that the dest register (rd) of SC does not introduce dependen-
cies, to allow (e.g.) hardware optimisations that dynamically replace LR/SC pairs by atomic read-
modify-write operations that can execute in the memory subsystem and therefore be guaranteed
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to succeed. In the axiomatic definition this is expressed by all address/data/control dependen-
cies stemming from load instructions (hence, not SC). In the operational model, matching this
weakness has proved to be difficult: it means the operational model must be able to promise
the success or failure of a SC even before any of its registers reads/writes have been performed,
and in particular, before the SC’s address and data are available. This can lead to deadlocks in
the operational model. To illustrate this consider, for example, the following litmus test and a
state where both a and e are satisfied and finished, and where b and f are not propagated.

Thread 0
lr.w x1,0(x2) a:R x=0
sw x3,0(x4) b:W y=2
fence w,w
sc.w x5,x6,0(x2) d:W x=1

fence w,w

Thread 1
lr.w x1,0(x2) e:R y=0
sw x3,0(x4) f:W x=2
fence w,w
sc.w x5,x6,0(x2) h:W y=1

fence w,wco

co

fr fr

In this state, d can promise its success, locking memory location x, and immediately after, h
can promise its success, locking location y. The resulting state has a deadlock:

• For d to propagate, the preceding fence w,w has to be committed and hence b propagated.
But b cannot propagate since y is locked.

• For h to propagate, the preceding fence w,w has to be committed and hence f propagated.
But f cannot propagate since x is locked.

Similar situations arise from cases where there are other barriers or release/acquire instruc-
tions in-between the LR/SC, or if the SC has additional dependencies that the LR does not have
(this can also lead to a deadlock when using AMOs instead of LR/SC). These are cases that are
not really intended to be supported by the
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