

ORCA FPGA-Optimized

© 2016 VectorBlox Computing Inc.

What is ORCA?

- Family of RISC-V implementations
 - Highly parameterized
 - Ideally suited for FPGAs
 - Portable across FPGA vendors
 - BSD license open source hardware

Why ORCA?

- Many reasons
 - Orcas travel in pods: family of many sizes
 - Orcas are native to Vancouver
- ORCA many possible backronyms
 - ORCA **RISC-V** Computer Architecture
 - ORCA Reconfigurable CPU Architecture
 - Optimized RISC-V CPU Architecture

ORCA: Multiple FPGA Vendors

- Altera
 - Drop-in Qsys replacement for Nios II/f
 - Avalon I / D masters
- Lattice
 - Wishbone I / D masters
- Xilinx, Microsemi
 - Coming soon

ORCA RISC-V RV32I on Different FPGAs

		Cyclone IV Cyclone IV EPACEAE23208H GCGAASIAHOC SMIGAAMOC 663	ADERA. Stratix V
Area	2008 LUT4	1623 LUT4	541 ALMs
Fmax	22 MHz	109 MHz	244 MHz
DMIPS	n/a	79 MIPS	212 MIPS
DMIPS/MHz	n/a	0.73	0.87

ORCA vs Other RISC-V

	ORCA	Z-scale	PicoRV
	RV32IM	RV32IM	RV32I
Area	2353 LUT4	2678 LUT4	2949 LUT4
	(Cyclone IV,	(Spartan 6,	(Cyclone IV,
	60nm)	45nm)	60nm)
Fmax	125 MHz	33 MHz	127 MHz
DMIPS	122 MIPS	44 MIPS	39 MIPS
DMIPS/MHz	0.98	1.35	0.31
	(measured)	(claimed)	(claimed)

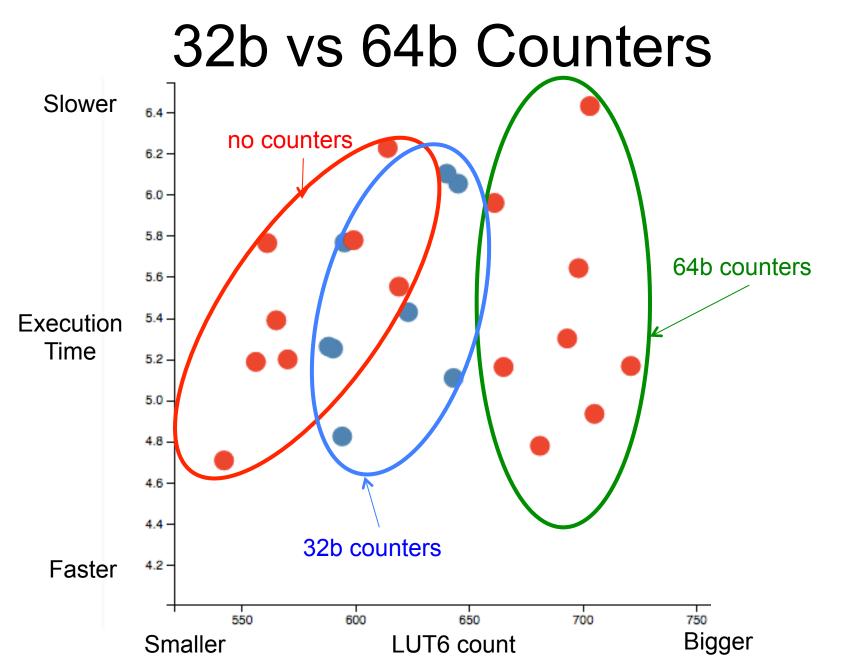
ORCA RISC-V vs FPGA CPUs

	ORCA RV32IM	Altera Nios II/f
Area	2353 LUT4 (Cyclone IV)	2678 LUT4 (Cyclone IV)
Fmax	125 MHz	140 MHz
DMIPS	122 MIPS	163 MIPS
DMIPS/MHz	0.98 (measured)	1.16 (claimed)

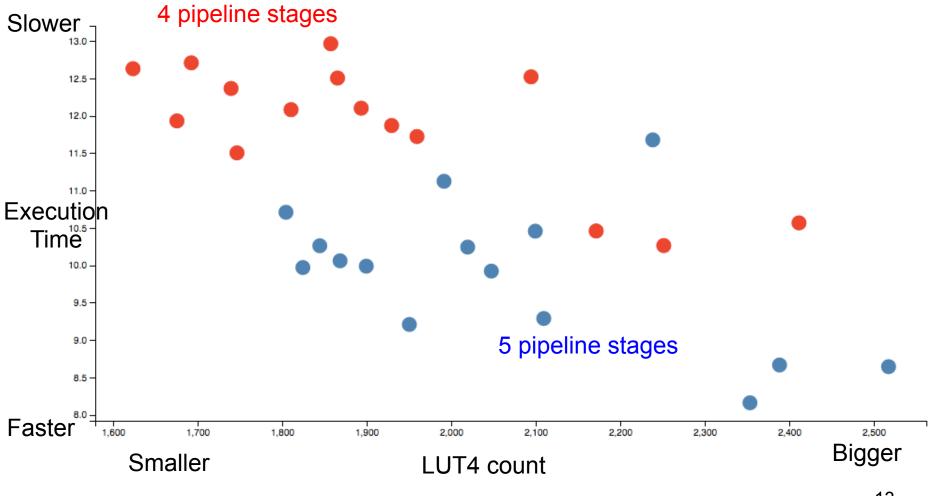
RISC-V: Architecture Space

- Width (3 choices)
 - 32, 64, 128 bits
- Instruction Set (9 binary options, 2^9 choices)
 - Minimum: I
 - Binary options: M, A, F, D (== G), Q, L, B, T, P
- Instruction Encoding (2 choices)
 C
- Architecture Space 3 x 2¹⁰ = 3072 possibilities

ORCA Implementation Space


- Logic design (12 choices)
 - Multiplier (sw, hw)
 - Divider (sw, hw)
 - Shifter (1-cycle, 8-cycles, 32-cycles)
- Counters (3 choices)
 - 0, 32, or 64 bits
- Pipelining (2 choices)
 - 4 or 5 stages
- Forwarding (2 choices)
 - ALU only
 - ALU + other units

Parameters REGISTER_SIZE:	32 🔽
RESET_VECTOR:	0x00000200
	TIPLY
	DE
SHIFTER MAX CYCLE	S: 1 💌 cycles
FORWARD FROM	_ALU ONLY
INCLUDE COUNTERS	S: 32 👻
BRANCH_PREDIC	CTION
PIPELINE STAGES:	4 💌


- Implementation space $12 \times 3 \times 2 \times 2 = 144$ possibilities
- Overall arch. x impl. = 3072 x 144 / 2 = 221,184 possibilities

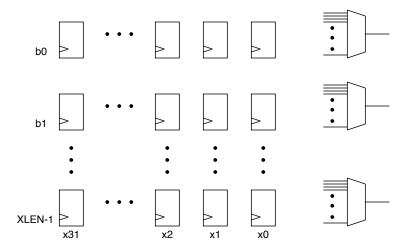
Huge Design Space

- Implementation on ASIC
 - Need to choose one design point in the architecture + implementation space
 - Benefit: user has no choice
 - Problem: compromise across many applications
- Implementation on FPGA
 - Can have fully parameterized design
 - User can choose best architecture + implementation according to application
 - Benefit: good performance, area
 - Problem: overwhelming design space

4 vs 5 Pipeline Stages

FPGA → ASIC but ASIC !→ FPGA

good FPGA implementation

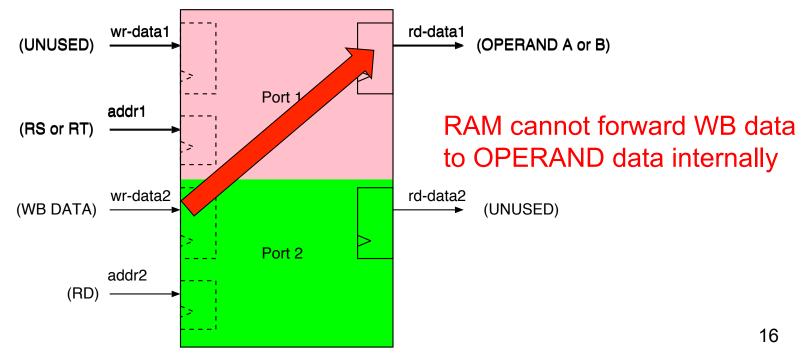

➔ often leads to good ASIC implementation

good ASIC implementation

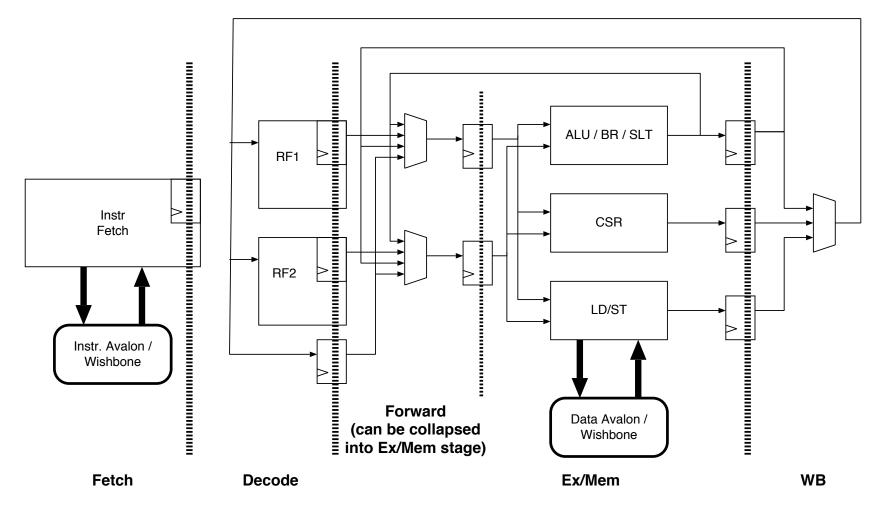
→ often leads to poor FPGA implementation

Register File

• Discrete FFs: inefficient



Cost of muxes (1b wide): mux4: 2 LUT4 or 1 LUT6 mux16: 10 LUT4 or 5 LUT6 mux32: 11 LUT4 or 5.5 LUT6


- -32 cpu registers x 32 b = 1024 FFs
- 32 mux32 = 32 x 11 LUT4 = 352 LUT4s
- Note: muxes are costly, must avoid!!!

Register File Implications

- Block RAMs: dual ported, registered output
 - Use 1 RD, 1 WR port
 - Use data-out FFs as pipeline FFs
 - Needs external data-forwarding

ORCA Datapath

Some FPGA Suggestions

- RV32E spec
 - Reduced # registers saves nothing in FPGAs
 - Divide is expensive
- Software
 - Beware, shifts may be 1b/cycle (slow)
- Privileged Arch spec
 - Too many CSRs, 64b counters too big
 - Increases pressure on multiplexers
 - Suggest small / med / full versions
 - No "official" rules on what to include/exclude to reduce size
 - Eg, hypervisors not likely to run on FPGAs

Conclusions

- ORCA RISC-V family is free, portable, FPGA-optimized
 - FPGA and ASIC optimizations are different
 - FPGA architecture dictates certain design choices
 - Some RISC-V decisions are "unconsciously" aimed towards ASIC implementation
 - These do not lead to good FPGA implementations
 - But good FPGA choices lead to good ASICs

Free FPGA Hardware!

ICE40

UI TRA

 Today only: Lattice donating FPGA boards for RISC-V users

ORCA RV32I system ~2000 LUTs

http://www.github.com/VectorBlox/risc-v

About 1500 LUTs available for user I/O (eg, UART)

LUNCHTIME

So Long, and Thanks for All the Fish !!

