
Introduction
The crosvm project is a hosted (a.k.a. type-2) virtual machine monitor.

crosvm runs untrusted operating systems along with virtualized devices. Initially intended to be used
with KVM and Linux, crosvm supports multiple kinds of hypervisors. crosvm is focussed on safety
within the programming language and a sandbox around the virtual devices to protect the host from
attack in case of exploits in crosvm itself.

Other programs similar to crosvm are QEMU and VirtualBox. An operating system, made of a root
file system image and a kernel binary, are given as input to crosvm and then crosvm will run the
operating system using the platform's hypervisor.

Announcements
Developer Mailing List
#crosvm on matrix.org
Source code

GitHub mirror
API documentation, useful for searching API.
Files for this book are under /docs/.

Public issue tracker
For Googlers: See go/crosvm#filing-bugs.

https://en.wikipedia.org/wiki/Hypervisor#Classification
https://groups.google.com/a/chromium.org/g/crosvm-announce
https://groups.google.com/a/chromium.org/g/crosvm-dev
https://matrix.to/#/#crosvm:matrix.org
https://chromium.googlesource.com/crosvm/crosvm/
https://github.com/google/crosvm
https://crosvm.dev/doc/crosvm/
https://chromium.googlesource.com/crosvm/crosvm/+/HEAD/docs/
https://issuetracker.google.com/issues?q=status:open%20componentid:1161302
https://goto.google.com/crosvm#filing-bugs

Building Crosvm
This page describes how to build and develop crosvm on linux. If you are targeting another OS such
as ChromeOS, please see Integration

Checking out

Obtain the source code via git clone.

» Setting up the development environment

Crosvm uses submodules to manage external dependencies. Initialize them via:

It is recommended to enable automatic recursive operations to keep the submodules in sync with
the main repository (But do not push them, as that can conflict with repo):

Crosvm development best works on Debian derivatives. We provide a script to install the necessary
packages on Debian, Ubuntu or gLinux:

For other systems, please see below for instructions on Using the development container.

Using the development container

We provide a Debian container with the required packages installed. With Docker installed, it can be
started with:

The container image is big and may take a while to download when first used. Once started, you
can follow all instructions in this document within the container shell.

Instead of using the interactive shell, commands to execute can be provided directly:

git clone https://chromium.googlesource.com/crosvm/crosvm

git submodule update --init

git config submodule.recurse true
git config push.recurseSubmodules no

./tools/install-deps

./tools/dev_container

https://crosvm.dev/book/integration/index.html
https://docs.docker.com/get-docker/

Note: The container and build artifacts are preserved between calls to ./tools/dev_container . If
you wish to start fresh, use the --reset flag.

Building a binary

If you simply want to try crosvm, run cargo build . Then the binary is generated at
./target/debug/crosvm . Now you can move to Example Usage.

If you want to enable additional features, use the --features flag. (e.g. cargo build --
features=gdb)

Development

Iterative development

You can use cargo as usual for crosvm development to cargo build and cargo test single crates
that you are working on.

If you are working on aarch64 specific code, you can use the test_target tool to instruct cargo to
build for aarch64 and run tests on a VM:

The script will start a VM for testing and write environment variables for cargo to .envrc . With
those cargo build will build for aarch64 and cargo test will run tests inside the VM.

The aarch64 VM can be managed with the ./tools/aarch64vm script.

Note: See Cross-compilation for notes on cross-compilation.

Running all tests

Crosvm cannot use cargo test --workspace because of various restrictions of cargo. So we have
our own test runner:

Which will run all tests locally. Since we have some architecture-dependent code, we also have the
option of running tests within an aarch64 VM:

./tools/dev_container cargo build

./tools/test_target set vm:aarch64 && source .envrc
cd mycrate && cargo test

./tools/run_tests

https://crosvm.dev/book/running_crosvm/example_usage.html
https://crosvm.dev/book/running_crosvm/features.html

When working on a machine that does not support cross-compilation (e.g. gLinux), you can use the
dev container to build and run the tests.

It is also possible to run tests on a remote machine via ssh. The target architecture is automatically
detected:

However, it is your responsibility to make sure the required libraries for crosvm are installed and
password-less authentication is set up. See ./tools/impl/testvm/cloud_init.yaml for hints on
what the VM has installed.

Presubmit checks

To verify changes before submitting, use the presubmit script:

This will run clippy, formatters and runs all tests. The presubmits will use the dev container to build
for other platforms if your host is not set up to do so.

To run checks faster, they can be run in parallel in multiple tmux panes:

The --quick variant will skip some slower checks, like building for other platforms altogether:

Cross-compilation

Crosvm is built and tested on x86, aarch64 and armhf. Your system needs some setup work to be
able to cross-comple for other architectures, hence it is recommended to use the development
container, which will have everything configured.

Note: Cross-compilation is not supported on gLinux. Please use the development container.

./tools/run_tests --target=vm:aarch64

./tools/dev_container ./tools/run_tests --target=vm:aarch64

./tools/run_tests --target=ssh:hostname

./tools/presubmit

./tools/presubmit --tmux

./tools/presubmit --quick

Enable foreign architectures

Your host needs to be set up to allow installation of foreign architecture packages.

On Debian this is as easy as:

On ubuntu this is a little harder and needs some manual modifications of APT sources.

With that enabled, the following scripts will install the needed packages:

Configuring wine and mingw64

Crosvm is also compiled and tested on windows. Some limited testing can be done with mingw64
and wine on linux machines. Use the provided setup script to install the needed dependencies.

Configure cargo for cross-compilation

Cargo requries additional configuration to support cross-compilation. You can copy the provided
example config to your cargo configuration:

Known issues

Devices can't be jailed if /var/empty doesn't exist. sudo mkdir -p /var/empty to work around
this for now.
You need read/write permissions for /dev/kvm to run tests or other crosvm instances. Usually
it's owned by the kvm group, so sudo usermod -a -G kvm $USER and then log out and back in
again to fix this.
Some other features (networking) require CAP_NET_ADMIN so those usually need to be run as
root.

sudo dpkg --add-architecture arm64
sudo dpkg --add-architecture armhf
sudo apt update

./tools/install-aarch64-deps

./tools/install-armhf-deps

./tools/install-mingw64-deps

cat .cargo/config.debian.toml >> ${CARGO_HOME:-~/.cargo}/config.toml

https://askubuntu.com/questions/430705/how-to-use-apt-get-to-download-multi-arch-library

Building Crosvm on Windows
This page describes how to build and develop crosvm on windows. If you are targeting linux, please
see Building Crosvm on linux

NOTE: Following instruction assume that

git is installed and git command exists in your Env:PATH
the commands are run in powershell

Create base directory - C:\src

Checking out

Obtain the source code via git clone.

Setting up the development environment

Crosvm uses submodules to manage external dependencies. Initialize them via:

It is recommended to enable automatic recursive operations to keep the submodules in sync with
the main repository (But do not push them, as that can conflict with repo):

install-deps.ps1 install the necessary tools needed to build crosvm on windows. In addition to
installing the scripts, the script also sets up environment variables.

The below script may prompt you to install msvc toolchain via Visual Studio community edition.

mkdir C:\src
cd C:\src

git clone https://chromium.googlesource.com/crosvm/crosvm

cd crosvm
git submodule update --init

git config submodule.recurse true
git config push.recurseSubmodules no

https://crosvm.dev/book/building_crosvm.html
https://git-scm.com/download/win

NOTE: Above step sets up enviroment variables. You may need to either start a new powershell
session or reload the environemnt variables,

Build crosvm

Set-ExecutionPolicy Unrestricted -Scope CurrentUser
./tools/install-deps.ps1

cargo build --features all-msvc64,whpx

Testing
Crosvm runs on a variety of platforms with a significant amount of platform-specific code. Testing on
all the supported platforms is crucial to keep crosvm healthy.

Unit Tests

Unit tests are your standard rust tests embedded with the rest of the code in src/ and wrapped in
a #[cfg(test)] attribute.

Unit tests cannot make any guarantees on the runtime environment. Avoid doing the following
in unit tests:

Avoid kernel features such as io_uring or userfaultfd, which may not be available on all kernels.
Avoid functionality that requires privileges (e.g. CAP_NET_ADMIN)
Avoid spawning threads or processes
Avoid accessing kernel devices
Avoid global state in unit tests

This allows us to execute unit tests for any platform using emulators such as qemu-static or wine64.
It also allows them to execute quickly with parallel execution.

Integration tests

Cargo has native support for integration testing. Integration tests are written just like unit tests, but
live in a separate directory at tests/ .

Integration tests guarantee that the test has privileged access to the test environment and that
tests are executed exclusively on a system to prevent conflicts with each other.

This allows tests to do all the things unit tests cannot do, at the cost of slower execution.

End To End (E2E) tests

End to end tests live in the e2e_tests crate. The crate provides a framework to boot a guest with
crosvm and execut commands in the guest to validate functionality at a high level.

E2E tests are executed just like integration tests.

Downstream Product tests

Each downstream product that uses crosvm is performing their own testing, e.g. ChromeOS is
running high level testing of its VM features on ChromeOS hardware, while AOSP is running testing

https://doc.rust-lang.org/rust-by-example/testing/integration_testing.html

of their VM features on AOSP hardware.

Upstream crosvm is not involved in these tests and they are not executed in crosvm CI.

Platorms tested

The platforms below can all be tested using tools/run_tests -p $platform . The table indicates
how these tests are executed:

Platform Build Unit Tests Integration Tests E2E Tests

x86_64 (linux) ✅ ✅ ✅ ✅

aarch64 (linux) ✅ ✅ (qemu-static1) ✅ (qemu2) ❌

armhf (linux) ✅ ✅ (qemu-static1) ❌ ❌

mingw643 (linux) 🚧 🚧 (wine64) ❌ ❌

mingw643 (windows) 🚧 🚧 🚧 ❌

Crosvm CI will use the same configuration as tools/run_tests .

1 qemu-static-aarch64 or qemu-static-arm translate instructions into x86 and executes them on the host kernel.
This works well for unit tests, but will fail when interacting with platform specific kernel features.

2 run_tests will launch a VM for testing in the background. This VM is using full system emulation, which causes
tests to be slow. Also not all aarch64 features are properly emulated, which prevents us from running e2e tests.

3 Windows builds of crosvm are a work in progress. Some tests are executed via wine64 on linux

Running Crosvm
This chapter includes instructions on how to run crosvm.

Example Usage: Functioning examples to get started.
Advanced Usage: Details on how to enable and configure features and devices of crosvm.
Custom Kernel / Rootfs: Instructions on how to build a kernel and rootfs for crosvm.
Options and Configuration Files: How to specify command-line options and use configuration
files
System Requirements: Host and guest requirements for running crosvm
Features: Feature flags available when building crosvm

https://crosvm.dev/book/running_crosvm/example_usage.html
https://crosvm.dev/book/running_crosvm/advanced_usage.html
https://crosvm.dev/book/running_crosvm/custom_kernel_rootfs.html
https://crosvm.dev/book/running_crosvm/options.html
https://crosvm.dev/book/running_crosvm/requirements.html
https://crosvm.dev/book/running_crosvm/features.html

Example Usage
This section will explain how to use a prebuilt Ubuntu image as the guest OS. If you want to prepare
a kernel and rootfs by yourself, please see Building crosvm.

The example code for this guide is available in tools/examples

Run a simple Guest OS (using virt-builder)

To run a VM with crosvm, we need two things: A kernel binary and a rootfs. You can build those
yourself or use prebuilt cloud/vm images that some linux distributions provide.

Preparing the guest OS image

One of the more convenient ways to customize these VM images is to use virt-builder from the
libguestfs-tools package.

Extract the Kernel (And initrd)

Crosvm directly runs the kernel instead of using the bootloader. So we need to extract the kernel
binary from the image. virt-builder has a tool for that:

The kernel binary is going to be saved in the same directory.

Note: Most distributions use an init ramdisk, which is extracted at the same time and needs to be
passed to crosvm as well.

Launch the VM

With all the files in place, crosvm can be run:

 # Build a simple ubuntu image and create a user with no password.
 virt-builder ubuntu-20.04 \
 --run-command "useradd -m -g sudo -p '' $USER ; chage -d 0 $USER" \
 -o ./rootfs

 virt-builder --get-kernel ./rootfs -o .

https://crosvm.dev/book/building_crosvm.html
https://source.chromium.org/chromiumos/chromiumos/codesearch/+/main:src/platform/crosvm/tools/examples
https://crosvm.dev/book/running_crosvm/custom_kernel_rootfs.html
https://libguestfs.org/virt-builder.1.html
https://libguestfs.org/virt-builder.1.html

The full source for this example can be executed directly:

Add Networking Support

Networking support is easiest set up with a TAP device on the host, which can be done with:

The script will create a TAP device called crosvm_tap and sets up routing. For details, see the
instructions for network devices.

With the crosvm_tap in place we can use it when running crosvm:

To use the network device in the guest, we need to assign it a static IP address. In our example guest
this can be done via a netplan config:

Which can be installed when building the VM image:

Run crosvm without sandboxing.
The rootfs is an image of a partitioned hard drive, so we need to tell
the kernel which partition to use (vda5 in case of ubuntu-20.04).
cargo run --no-default-features -- run \
 --disable-sandbox \
 --rwdisk ./rootfs \
 --initrd ./initrd.img-* \
 -p "root=/dev/vda5" \
 ./vmlinuz-*

./tools/examples/example_simple

./tools/examples/setup_network

Use the previously configured crosvm_tap device for networking.
cargo run -- run \
 --disable-sandbox \
 --rwdisk ./rootfs \
 --initrd ./initrd.img-* \
 --tap-name crosvm_tap \
 -p "root=/dev/vda5" \
 ./vmlinuz-*

Configure network with static IP 192.168.10.2

network:
 version: 2
 renderer: networkd
 ethernets:
 enp0s4:
 addresses: [192.168.10.2/24]
 nameservers:
 addresses: [8.8.8.8]
 gateway4: 192.168.10.1

https://crosvm.dev/book/running_crosvm/advanced_usage.html#network-device

This also allows us to use SSH to access the VM. The script above will install your
~/.ssh/id_rsa.pub into the VM, so you'll be able to SSH from the host to the guest with no

password:

The full source for this example can be executed directly:

Add GUI support

First you'll want to add some desktop environment to the VM image:

Then you can use the --gpu argument to specify how gpu output of the VM should be handled. In
this example we are using the virglrenderer backend and output into an X11 window on the host.

 builder_args=(
 # Create user with no password.
 --run-command "useradd -m -g sudo -p '' $USER ; chage -d 0 $USER"

 # Configure network via netplan config in 01-netcfg.yaml
 --hostname crosvm-test
 --copy-in "$SRC/guest/01-netcfg.yaml:/etc/netplan/"

 # Install sshd and authorized key for the user.
 --install openssh-server
 --ssh-inject "$USER:file:$HOME/.ssh/id_rsa.pub"

 -o rootfs
)
 virt-builder ubuntu-20.04 "${builder_args[@]}"

ssh 192.168.10.2

./tools/examples/example_network

 builder_args=(
 # Create user with no password.
 --run-command "useradd -m -g sudo -p '' $USER ; chage -d 0 $USER"

 # Configure network. See ./example_network
 --hostname crosvm-test
 --copy-in "$SRC/guest/01-netcfg.yaml:/etc/netplan/"

 # Install a desktop environment to launch
 --install xfce4

 -o rootfs
)
 virt-builder ubuntu-20.04 "${builder_args[@]}"

The full source for this example can be executed directly (Note, you may want to run
setup_networking first):

Enable the GPU and keyboard/mouse input. Since this will be a much heavier
system to run we also need to increase the cpu/memory given to the VM.
Note: GDM does not allow you to set your password on first login, you have to
log in on the command line first to set a password.
cargo run --features=gpu,x,virgl_renderer -- run \
 --cpus 4 \
 --mem 4096 \
 --disable-sandbox \
 --gpu backend=virglrenderer,width=1920,height=1080 \
 --display-window-keyboard \
 --display-window-mouse \
 --tap-name crosvm_tap \
 --rwdisk ./rootfs \
 --initrd ./initrd.img-* \
 -p "root=/dev/vda5" \
 ./vmlinuz-*

./tools/examples/example_desktop

Advanced Usage
To see the usage information for your version of crosvm, run crosvm or crosvm run --help .

Boot a Kernel

To run a very basic VM with just a kernel and default devices:

The compressed kernel image, also known as bzImage, can be found in your kernel build directory in
the case of x86 at arch/x86/boot/bzImage .

Rootfs

With a disk image

In most cases, you will want to give the VM a virtual block device to use as a root file system:

The root image must be a path to a disk image formatted in a way that the kernel can read. Typically
this is a squashfs image made with mksquashfs or an ext4 image made with mkfs.ext4 . By
specifying the root flag, the kernel is automatically told to use that image as the root, and therefore
it can only be given once. The ro flag also makes the disk image read-only for the guest. More disks
images can be given with -b or --block if needed.

To run crosvm with a writable rootfs, just remove the ro flag from the command-line above.

WARNING: Writable disks are at risk of corruption by a malicious or malfunctioning guest OS.

Without the root flag, mounting a disk image as the root filesystem requires to pass the
corresponding kernel argument manually using the -p option:

NOTE: If more disks arguments are added prior to the desired rootfs image, the

crosvm run "${KERNEL_PATH}"

crosvm run -b "${ROOT_IMAGE},root,ro" "${KERNEL_PATH}"

crosvm run --block "${ROOT_IMAGE}" -p "root=/dev/vda" bzImage

root=/dev/vda must be adjusted to the appropriate letter.

With virtiofs

Linux kernel 5.4+ is required for using virtiofs. This is convenient for testing. The file system must be
named "mtd*" or "ubi*".

Device emulation

Crosvm supports several emulated devices and 15+ types of virtio devices. See "Device" chapter for
the details.

Control Socket

If the control socket was enabled with -s , the main process can be controlled while crosvm is
running. To tell crosvm to stop and exit, for example:

NOTE: If the socket path given is for a directory, a socket name underneath that path will be
generated based on crosvm's PID.

WARNING: The guest OS will not be notified or gracefully shutdown.

This will cause the original crosvm process to exit in an orderly fashion, allowing it to clean up any
OS resources that might have stuck around if crosvm were terminated early.

Multiprocess Mode

By default crosvm runs in multiprocess mode. Each device that supports running inside of a sandbox
will run in a jailed child process of crosvm. The sandbox can be disabled for testing with the --
disable-sandbox option.

crosvm run --shared-dir "/:mtdfake:type=fs:cache=always" \
 -p "rootfstype=virtiofs root=mtdfake" bzImage

crosvm run -s /run/crosvm.sock ${USUAL_CROSVM_ARGS}
 <in another shell>
crosvm stop /run/crosvm.sock

https://crosvm.dev/book/devices/index.html

GDB Support

crosvm supports GDB Remote Serial Protocol to allow developers to debug guest kernel via GDB
(x86_64 or AArch64 only).

You can enable the feature by --gdb flag:

Then, you can start GDB in another shell.

For general techniques for debugging the Linux kernel via GDB, see this kernel documentation.

Defaults

The following are crosvm's default arguments and how to override them.

256MB of memory (set with -m)
1 virtual CPU (set with -c)
no block devices (set with -b , --block)
no network device (set with --net)
only the kernel arguments necessary to run with the supported devices (add more with -p)
run in multiprocess mode (run in single process mode with --disable-sandbox)
no control socket (set with -s)

Exit code

Crosvm will exit with a non-zero exit code on failure.

See CommandStatus for meaning of the major exit codes.

Use uncompressed vmlinux
crosvm run --gdb <port> ${USUAL_CROSVM_ARGS} vmlinux

gdb vmlinux
(gdb) target remote :<port>
(gdb) hbreak start_kernel
(gdb) c
<start booting in the other shell>

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
https://www.kernel.org/doc/html/latest/dev-tools/gdb-kernel-debugging.html
https://crosvm.dev/doc/crosvm/enum.CommandStatus.html

Custom Kernel / Rootfs
This document explains how to build a custom kernel and use debootstrab to build a rootfs for
running crosvm.

For an easier way to get started with prebuilt images, see Example Usage

Build a kernel

The linux kernel in chromiumos comes preconfigured for running in a crosvm guest and is the
easiest to build. You can use any mainline kernel though as long as it's configured for para-
virtualized (virtio) devices

If you are using the chroot for ChromiumOS development, you already have the kernel source.
Otherwise, you can clone it:

Either way that you get the kernel, the next steps are to configure and build the bzImage:

This kernel does not build any modules, nor does it support loading them, so there is no need to
worry about an initramfs, although they are supported in crosvm.

Build a rootfs disk

This stage enjoys the most flexibility. There aren't any special requirements for a rootfs in crosvm,
but you will at a minimum need an init binary. This could even be /bin/bash if that is enough for
your purposes. To get you started, a Debian rootfs can be created with debootstrap. Make sure to
define $CHROOT_PATH .

git clone --depth 1 -b chromeos-5.10
https://chromium.googlesource.com/chromiumos/third_party/kernel

CHROMEOS_KERNEL_FAMILY=termina ./chromeos/scripts/prepareconfig container-vm-x86_64
make olddefconfig
make -j$(nproc) bzImage

https://crosvm.dev/book/running_crosvm/example_usage.html
https://wiki.debian.org/Debootstrap

Note: If you run crosvm on a testing device (e.g. Chromebook in Developer mode), another
option is to share the host's rootfs with the guest via virtiofs. See the virtiofs usage.

You can simply create a disk image as follows:

truncate -s 20G debian.ext4
mkfs.ext4 debian.ext4
mkdir -p "${CHROOT_PATH}"
sudo mount debian.ext4 "${CHROOT_PATH}"
sudo debootstrap stable "${CHROOT_PATH}" http://deb.debian.org/debian/
sudo chroot "${CHROOT_PATH}"
passwd
echo "tmpfs /tmp tmpfs defaults 0 0" >> /etc/fstab
echo "tmpfs /var/log tmpfs defaults 0 0" >> /etc/fstab
echo "tmpfs /root tmpfs defaults 0 0" >> /etc/fstab
echo "sysfs /sys sysfs defaults 0 0" >> /etc/fstab
echo "proc /proc proc defaults 0 0" >> /etc/fstab
exit
sudo umount "${CHROOT_PATH}"

fallocate --length 4G disk.img
mkfs.ext4 ./disk.img

https://crosvm.dev/book/running_crosvm/advanced_usage.html#virtiofs-as-rootfs

Command line options and configuration files
It is possible to configure a VM through command-line options and/or a JSON configuration file.

The names and format of configurations options are consistent between both ways of specifying,
however the command-line includes options that are deprecated or unstable, whereas the
configuration file only allows stable options. This section reviews how to use both.

Command-line options

Command-line options generally take a set of key-value pairs separated by the comma (,)
character. The acceptable key-values for each option can be obtained by passing the --help option
to a crosvm command:

From this help message, we see that the --block or -b option accepts the path , ro , root ,
sparse , block-size , id , and direct keys. Keys which default value is mentioned are optional,

which means only the path key must always be specified.

One example invocation of the --block option could be:

Keys taking a boolean parameters can be enabled by specifying their name witout any value, so the
previous option can also be written as

crosvm run --help
...
 -b, --block parameters for setting up a block device.
 Valid keys:
 path=PATH - Path to the disk image. Can be specified
 without the key as the first argument.
 ro=BOOL - Whether the block should be read-only.
 (default: false)
 root=BOOL - Whether the block device should be mounted
 as the root filesystem. This will add the required
 parameters to the kernel command-line. Can only be
 specified once. (default: false)
 sparse=BOOL - Indicates whether the disk should support
 the discard operation. (default: true)
 block-size=BYTES - Set the reported block size of the
 disk. (default: 512)
 id=STRING - Set the block device identifier to an ASCII
 string, up to 20 characters. (default: no ID)
 direct=BOOL - Use O_DIRECT mode to bypass page cache.
 (default: false)
...

--block path=/path/to/bzImage,root=true,block-size=4096

Also, the name of the first key can be entirely omitted, which further simplifies our option as:

Configuration files

Configuration files are specified using the --cfg argument. Here is an example configuration file
specifying a basic VM with a few devices:

The equivalent command-line options corresponding to this configuration file would be:

Or, if we apply the simplification rules discussed in the previous section:

--block path=/path/to/bzImage,root,block-size=4096

--block /path/to/bzImage,root,block-size=4096

{
 "kernel": "/path/to/bzImage",
 "cpus": {
 "num-cores": 8
 },
 "mem": {
 "size": 2048
 },
 "block": [
 {
 "path": "/path/to/root.img",
 "root": true
 }
],
 "serial": [
 {
 "type": "stdout",
 "hardware": "virtio-console",
 "console": true,
 "stdin": true
 }
],
 "net": [
 {
 "tap-name": "crosvm_tap"
 }
]
}

--kernel path/to/bzImage \
--cpus num-cores=8 --mem size=2048 \
--block path=/path/to/root.img,root \
--serial type=stdout,hardware=virtio-console,console,stdin \
--net tap-name=crosvm_tap

Combining configuration files and command-line options

One useful use of configuration files is to specify a base configuration that can be augmented or
modified.

Configuration files and other command-line options can be specified together. When this happens,
the command-line parameters will be merged into the initial configuration created by the
configuration file, regardless of their position relative to the --cfg argument and even if they come
before it.

The effect of command-line arguments redefining items of the configuration file depends on the
nature of said items. If an item can be specified several times (like a block device), then the
command-line arguments will augment the configuration file. For instance, considering this
configuration file vm.json :

And the following crosvm invocation:

Then the created VM will have two block devices, the first one pointing to root.img and the second
one to home.img .

For options that can be specified only once, like --kernel , the one specified on the command-line
will take precedence over the one in the configuration file. For instance, with the same vm.json file
and the following command-line:

Then the loaded kernel will be /path/to/another/bzImage , and the kernel option in the
configuration file will become a no-op.

--kernel /path/to/bzImage \
--cpus 8 --mem 2048 \
--block /path/to/root.img,root \
--serial stdout,hardware=virtio-console,console,stdin \
--net tap-name=crosvm_tap

{
 "kernel": "/path/to/bzImage",
 "block": [
 {
 "path": "/path/to/root.img",
 "root": true
 }
]
}

crosvm run --cfg vm.json --block /path/to/home.img

crosvm run --cfg vm.json --kernel /path/to/another/bzImage

System Requirements
A Linux kernel with KVM support (check for /dev/kvm) is required to run crosvm. In order to run
certain devices, there are additional system requirements:

virtio-wayland - The memfd_create syscall, introduced in Linux 3.17, and a Wayland
compositor.
vsock - Host Linux kernel with vhost-vsock support, introduced in Linux 4.8.
multiprocess - Host Linux kernel with seccomp-bpf and Linux namespacing support.
virtio-net - Host Linux kernel with TUN/TAP support (check for /dev/net/tun) and running

with CAP_NET_ADMIN privileges.

Features
Feature flags of the crosvm crate control which features are included in the binary. These features
can be enabled using Cargo's --features flag. Some features are enabled by default unless the
Cargo --no-default-features flag is specified. See the crosvm crate documentation for details.

https://crosvm.dev/doc/crosvm/#feature-flags

Programmatic Interaction Using the
crosvm_control Library

Usage

crosvm_control provides a programmatic way to interface with crosvm as a substitute to the CLI.

The library itself is written in Rust, but a C/C++ compatible header (crosvm_control.h) is generated
during the crosvm build and emitted to the Rust OUT_DIR . (See the build.rs script for more
information).

The best practice for using crosvm_control from your project is to exclusively use the
crosvm_control.h generated by the crosvm build. This ensures that there will never be a runtime

version mismatch between your project and crosvm. Additionally, this will allow for build-time
checks against the crosvm API.

During your project's build step, when building the crosvm dependency, the emitted
crosvm_control.h should be installed to your project's include dir - overwriting the old version if

present.

Changes

As crosvm_control is a externally facing interface to crosvm, great care must be taken when
updating the API surface. Any breaking change to a crosvm_control entrypoint must be handled
the same way as a breaking change to the crosvm CLI.

As a general rule, additive changes (such as adding new fields to the end of a struct, or adding a new
API) are fine and should be integrated correctly with downstream projects so long as those projects
follow the usage best practices. Changes that change the signature of any existing crosvm_control
function will cause problems downstream and should be considered a breaking change.

(ChromeOS Developers Only)

For ChromeOS, it is possible to integrate a breaking change from upstream crosvm, but it should be
avoided if at all possible. See here for more information.

https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/crosvm_control/src/lib.rs
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/crosvm_control/build.rs
https://crosvm.dev/book/integration/chromeos.html#cq-depend

Devices
This chapter describes emulated devices in crosvm. These devices work like hardware for the guest.

List of devices

Here is a (non-comprehensive) list of emulated devices provided by crosvm.

Emulated Devices

CMOS/RTC - Used to get the current calendar time.
i8042 - Used by the guest kernel to exit crosvm.
serial - x86 I/O port driven serial devices that print to stdout and take input from stdin.

VirtIO Devices

balloon - Allows the host to reclaim the guest's memories.
block - Basic read/write block device.
console - Input and outputs on console.
fs - Shares file systems over the FUSE protocol.
gpu - Graphics adapter.
input - Creates virtual human interface devices such as keyboards.
iommu - Emulates an IOMMU device to manage DMA from endpoints in the guest.
net - Device to interface the host and guest networks.
p9 - Shares file systems over the 9P protocol.
pmem - Persistent memory.
rng - Entropy source used to seed guest OS's entropy pool.
snd - Encodes and decodes audio streams.
tpm - Creates a TPM (Trusted Platform Module) device backed by libtpm2 simulator or vTPM

daemon.
video - Allows the guest to leverage the host's video capabilities.
wayland - Allows the guest to use the host's Wayland socket.
vsock - Enables use of virtual sockets for the guest.
vhost-user - VirtIO devices which offloads the device implementation to another process

through the vhost-user protocol.
vmm side: Shares its virtqueues.
device side: Consumes virtqueues.

https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/cmos.rs
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/i8042.rs
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/serial.rs
https://crosvm.dev/book/devices/balloon.html
https://crosvm.dev/book/devices/block.html
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/console.rs
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/fs/
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/gpu/
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/input/
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/iommu.rs
https://crosvm.dev/book/devices/net.html
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/p9.rs
https://crosvm.dev/book/devices/pmem.html
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/rng.rs
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/snd/
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/tpm.rs
https://crosvm.dev/book/devices/video.html
https://crosvm.dev/book/devices/wayland.html
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/vhost/vsock.rs
https://crosvm.dev/book/devices/vhost_user.html
https://qemu.readthedocs.io/en/latest/interop/vhost-user.html
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/vhost/user/vmm/
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/devices/src/virtio/vhost/user/device/

Block
crosvm supports virtio-block device that works as a disk for the guest.

First, create a ext4 (or whatever file system you want) disk file.

Then, pass it with --block flag so the disk will be exposed as /dev/vda , /dev/vdb , etc. The device
can be mounted with the mount command.

To expose the block device as a read-only disk, you can add the ro flag after the disk image path:

Rootfs

If you use a block device as guest's rootfs, you can add the root flag to the --block parameter:

This flag automatically adds a root=/dev/vdX kernel parameter with the corresponding virtio-block
device name and read-only (ro) or read-write (rw) option depending on whether the ro flag has
also been specified or not.

Options

The --block parameter support additional options to enable features and control disk parameters.
These may be specified as extra comma-separated key=value options appended to the required
filename option. For example:

fallocate -l 1G disk.img
mkfs.ext4 disk.img

crosvm run \
 --block disk.img
 ... # usual crosvm args

crosvm run \
 --block disk.img,ro
 ... # usual crosvm args

crosvm run \
 --block disk.img,root
 ... # usual crosvm args

https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html#x1-2390002

The available options are documented in the following sections.

Sparse

Syntax: sparse=(true|false)
Default: sparse=true

The sparse option controls whether the disk exposes the thin provisioning discard command. If
sparse is set to true , the VIRTIO_BLK_T_DISCARD request will be available, and it will be translated

to the appropriate system call on the host disk image file (for example,
fallocate(FALLOC_FL_PUNCH_HOLE) for raw disk images on Linux). If sparse is set to false , the

disk will be fully allocated at startup (using fallocate() or equivalent on other platforms), and the
VIRTIO_BLK_T_DISCARD request will not be supported for this device.

O_DIRECT

Syntax: o_direct=(true|false)
Default: o_direct=false

The o_direct option enables the Linux O_DIRECT flag on the underlying disk image, indicating that
I/O should be sent directly to the backing storage device rather than using the host page cache. This
should only be used with raw disk images, not qcow2 or other formats. The block_size option may
need to be adjusted to ensure that I/O is sufficiently aligned for the host block device and filesystem
requirements.

Block size

Syntax: block_size=BYTES
Default: block_size=512

The block_size option overrides the reported block size (also known as sector size) of the virtio-
block device. This should be a power of two larger than or equal to 512.

ID

Syntax: id=DISK_ID
Default: No identifier

The id option provides the virtio-block device with a unique identifier. The DISK_ID string must be
20 or fewer ASCII printable characters. The id may be used by the guest environment to uniquely

crosvm run
 --block disk.img,ro,sparse=false,o_direct=true,block_size=4096,id=MYSERIALNO
 ... # usual crosvm args

https://man7.org/linux/man-pages/man2/fallocate.2.html#DESCRIPTION

identify a specific block device rather than making assumptions about block device names.

The Linux virtio-block driver exposes the disk identifer in a sysfs file named serial ; an example
path looks like /sys/devices/pci0000:00/0000:00:02.0/virtio1/block/vda/serial (the PCI
address may differ depending on which other devices are enabled).

Resizing

The crosvm block device supports run-time resizing. This can be accomplished by starting crosvm
with the -s control socket, then using the crosvm disk command to send a resize request:

crosvm disk resize DISK_INDEX NEW_SIZE VM_SOCKET

DISK_INDEX : 0-based index of the block device (counting all --block in order).
NEW_SIZE : desired size of the disk image in bytes.
VM_SOCKET : path to the VM control socket specified when running crosvm (-s / --socket

option).

For example:

The crosvm disk resize command only resizes the block device and its backing disk image. It is the
responsibility of the VM socket user to perform any partition table or filesystem resize operations, if
required.

Create a 1 GiB disk image
truncate -s 1G disk.img

Run crosvm with a control socket
crosvm run \
 --block disk.img,sparse=false \
 -s /tmp/crosvm.sock \
 ... # other crosvm args

In another shell, extend the disk image to 2 GiB.
crosvm disk resize \
 0 \
 $((2 * 1024 * 1024 * 1024)) \
 /tmp/crosvm.sock

The guest OS should recognize the updated size and log a message:
virtio_blk virtio1: [vda] new size: 4194304 512-byte logical blocks (2.15 GB/2.00
GiB)

Network
The most convenient way to provide a network device to a guest is to setup a persistent TAP
interface on the host. This section will explain how to do this for basic IPv4 connectivity.

These commands create a TAP interface named crosvm_tap that is accessible to the current user,
configure the host to use the IP address 192.168.10.1 , and bring the interface up.

The next step is to make sure that traffic from/to this interface is properly routed:

The interface is now configured and can be used by crosvm:

Provided the guest kernel had support for VIRTIO_NET , the network device should be visible and
configurable from the guest:

These commands assign IP address 192.168.10.2 to the guest, activate the interface, and route all
network traffic to the host. The last line also ensures DNS will work.

Please refer to your distribution's documentation for instructions on how to make these settings
persistent for the host and guest if desired.

sudo ip tuntap add mode tap user $USER vnet_hdr crosvm_tap
sudo ip addr add 192.168.10.1/24 dev crosvm_tap
sudo ip link set crosvm_tap up

sudo sysctl net.ipv4.ip_forward=1
Network interface used to connect to the internet.
HOST_DEV=$(ip route get 8.8.8.8 | awk -- '{printf $5}')
sudo iptables -t nat -A POSTROUTING -o "${HOST_DEV}" -j MASQUERADE
sudo iptables -A FORWARD -i "${HOST_DEV}" -o crosvm_tap -m state --state
RELATED,ESTABLISHED -j ACCEPT
sudo iptables -A FORWARD -i crosvm_tap -o "${HOST_DEV}" -j ACCEPT

crosvm run \
 ...
 --net tap-name=crosvm_tap \
 ...

Replace with the actual network interface name of the guest
(use "ip addr" to list the interfaces)
GUEST_DEV=enp0s5
sudo ip addr add 192.168.10.2/24 dev "${GUEST_DEV}"
sudo ip link set "${GUEST_DEV}" up
sudo ip route add default via 192.168.10.1
"8.8.8.8" is chosen arbitrarily as a default, please replace with your local (or
preferred global)
DNS provider, which should be visible in `/etc/resolv.conf` on the host.
echo "nameserver 8.8.8.8" | sudo tee /etc/resolv.conf

Balloon
crosvm supports virtio-balloon for managing guest memory.

How to control the balloon size

When running a VM, specify VM_SOCKET with -s option. (example: /run/crosvm.sock)

Then, open another terminal and specify the balloon size in bytes with crosvm balloon command.

Note: The size of balloon is managed in 4096 bytes units. The specified value will be rounded down
to a multiple of 4096 bytes.

You can confirm the balloon size with crosvm balloon_stats command.

crosvm run \
 -s ${CROSVM_SOCKET} \
 # usual crosvm args
 /path/to/bzImage

crosvm balloon 4096 ${CROSVM_SOCKET}

crosvm balloon_stats ${CROSVM_SOCKET}

https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html#x1-2790005

Vsock device
crosvm supports virtio-vsock device for communication between the host and a guest VM.

Assign a context id to a guest VM by passing it with --cid flag.

Then, the guest and the host can communicate with each other via vsock. Host always has 2 as its
context id.

crosvm assumes that the host has a vsock device at /dev/vhost-vsock . If you want to use a device
at a different path or one given as an fd, you can use --vhost-vsock-device flag or --vhost-vsock-
fd flag respectively.

Example usage

At host shell:

At guest shell:

If a vsock device is configured properly in the guest VM, a connection between the host and the
guest can be established and packets can be sent from both side. In the above example, your inputs
to a shell on one's side should be shown at the shell on the other side if a connection is successfully
established.

GUEST_CID=3

crosvm run \
 --cid "${GUEST_CID}" \
 <usual crosvm arguments>
 /path/to/bzImage

PORT=11111

Listen at host
ncat -l --vsock ${PORT}

HOST_CID=2
PORT=11111

Make a connection to the host
ncat --vsock ${HOST_CID} ${PORT}

https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html#x1-389001r356

Pmem
crosvm supports virtio-pmem to provide a virtual device emulating a byte-addressable persistent
memory device. The disk image is provided to the guest using a memory-mapped view of the image
file, and this mapping can be directly mapped into the guest's address space if the guest operating
system and filesystem support DAX.

Pmem devices may be added to crosvm using the --pmem-device (read only) or --rw-pmem-device
(read-write) flag, specifying the filename of the backing image as the parameter.

The Linux virtio-pmem driver can be enabled with the CONFIG_VIRTIO_PMEM option. It will expose
pmem devices as /dev/pmem0 , /dev/pmem1 , etc., which may be mounted like any other block device.
A pmem device may also be used as a root filesystem by adding a root= kernel command line
parameters:

The advantage of pmem over a regular block device is the potential for less cache duplication; since
the guest can directly map pages of the pmem device, it does not need to perform an extra copy into
the guest page cache. This can result in lower memory overhead versus virtio-block (when not
using O_DIRECT).

The file backing a persistent memory device is mapped directly into the guest's address space, which
means that only the raw disk image format is supported; disk images in qcow2 or other formats may
not be used as a pmem device. See the block device for an alternative that supports more file
formats.

crosvm run \
 --pmem-device disk.img \
 ... # usual crosvm args

crosvm run \
 --pmem-device rootfs.img \
 -p "root=/dev/pmem0 ro" \
 ... # usual crosvm args

https://www.kernel.org/doc/html/latest/filesystems/dax.html
https://crosvm.dev/book/devices/block.html

Wayland
If you have a Wayland compositor running on your host, it is possible to display and control guest
applications from it. This requires:

A guest kernel version 5.16 or above with CONFIG_DRM_VIRTIO_GPU enabled,
The sommelier Wayland proxy in your guest image.

This section will walk you through the steps needed to get this to work.

Guest kernel requirements

Wayland support on crosvm relies on virtio-gpu contexts, which have been introduced in Linux 5.16.
Make sure your guest kernel is either this version or a more recent one, and that
CONFIG_DRM_VIRTIO_GPU is enabled in your kernel configuration.

Crosvm requirements

Wayland forwarding requires the GPU feature and the virtio-gpu cross domain mode to be enabled.

Building sommelier

Sommelier is a proxy Wayland compositor that forwards the Wayland protocol from a guest to a
compositor running on the host through the guest GPU device. As it is not a standard tool, we will
have to build it by ourselves. It is recommended to do this from the guest with networking enabled.

Clone ChromeOS' platform2 repository, which contains the source for sommelier:

Go into the sommelier directory and prepare for building:

This setup step will check for all libraries required to build sommelier. If some are missing, install
them using your guest's distro package manager and re-run meson setup until it passes.

Finally, build sommelier and install it:

cargo build --features "gpu"

git clone https://chromium.googlesource.com/chromiumos/platform2

cd platform2/vm_tools/sommelier/
meson setup build -Dwith_tests=false

https://chromium.googlesource.com/chromiumos/platform2/+/master/vm_tools/sommelier
https://crosvm.dev/book/running_crosvm/example_usage.html#add-networking-support

This last step will put the sommelier binary into /usr/local/bin .

Running guest Wayland apps

Crosvm can connect to a running Wayland server (e.g. weston) on the host and forward the protocol
from all Wayland guest applications to it. To enable this you need to know the socket of the Wayland
server running on your host - typically it would be $XDG_RUNTIME_DIR/wayland-0 .

Once you have confirmed the socket, create a GPU device and enable forwarding by adding the --
gpu=context-types=cross-domain --wayland-sock $XDG_RUNTIME_DIR/wayland-0 arguments to
your crosvm command-line. Other context types may be also enabled for those interested in 3D
acceleration.

You can now run Wayland clients through sommelier, e.g:

Or

Applications started that way should appear on and be controllable from the Wayland server
running on your host.

The --virtgpu-channel option is currently necessary for sommelier to work with the setup of this
document, but will likely not be required in the future.

If you have Xwayland installed in the guest you can also run X applications:

meson compile -C build
sudo meson install -C build

sommelier --virtgpu-channel weston-terminal

sommelier --virtgpu-channel gedit

sommelier -X --xwayland-path=/usr/bin/Xwayland xeyes

https://github.com/wayland-project/weston

Video (experimental)
The virtio video decoder and encoder devices allow a guest to leverage the host's hardware-
accelerated video decoding and encoding capabilities. The specification (v3, v5) for these devices is
still a work-in-progress, so testing them requires an out-of-tree kernel driver on the guest.

The virtio-video host device uses backends to perform the actual decoding. The currently supported
backends are:

libvda , a hardware-accelerated backend that supports both decoding and encoding by
delegating the work to a running instance of Chrome. It can only be built and used in a
ChromeOS environment.
ffmpeg , a software-based backend that supports encoding and decoding. It exists to make

testing and development of virtio-video easier, as it does not require any particular hardware
and is based on a reliable codec library.

The rest of this document will solely focus on the ffmpeg backend. More accelerated backends will
be added in the future.

Guest kernel requirements

The virtio_video branch of this kernel git repository contains a work-in-progress version of the
virtio-video guest kernel driver, based on a (hopefully) recent version of mainline Linux. If you use

this as your guest kernel, the virtio_video_defconfig configuration should allow you to easily boot
from crosvm, with the video (and a few other) virtio devices support built-in.

Quick building guide after checking out this branch:

The resulting kernel image that can be passed to crosvm will be in
build_crosvm_x86/arch/x86/boot/bzImage .

Crosvm requirements

The virtio-video support is experimental and needs to be opted-in through the "video-decoder" or
"video-encoder" Cargo feature. In the instruction below we'll be using the FFmpeg backend which

requires the "ffmpeg" feature to be enabled as well.

The following example builds crosvm with FFmpeg encoder and decoder backend support:

mkdir build_crosvm_x86
make O=build_crosvm_x86 virtio_video_defconfig
make O=build_crosvm_x86 -j16

https://markmail.org/message/dmw3pr4fuajvarth
https://markmail.org/message/zqxmuf5x7aosbmmm
https://github.com/Gnurou/linux

To enable the decoder device, start crosvm with the --video-decoder=ffmpeg command-line
argument:

Alternatively, to enable the encoder device, start crosvm with the --video-encoder=ffmpeg
command-line argument:

If the guest kernel includes the virtio-video driver, then the device should be probed and show up.

Testing the device from the guest

Video capabilities are exposed to the guest using V4L2. The encoder or decoder device should
appear as /dev/videoX , probably /dev/video0 if there are no additional V4L2 devices.

Checking capabilities and formats

v4l2-ctl , part of the v4l-utils package, can be used to test the device's existence.

Example output for the decoder is shown below.

Note that the Card type is ffmpeg , indicating that decoding will be performed in software on the
host. We can then query the support input (OUTPUT in V4L2-speak) formats, i.e. the encoded formats
we can send to the decoder:

cargo build --features "video-encoder,video-decoder,ffmpeg"

crosvm run --disable-sandbox --video-decoder=ffmpeg -c 4 -m 2048 --block
/path/to/disk.img,root --serial type=stdout,hardware=virtio-
console,console=true,stdin=true /path/to/bzImage

crosvm run --disable-sandbox --video-encoder=ffmpeg -c 4 -m 2048 --block
/path/to/disk.img,root --serial type=stdout,hardware=virtio-
console,console=true,stdin=true /path/to/bzImage

v4l2-ctl -d/dev/video0 --info
Driver Info:
 Driver name : virtio-video
 Card type : ffmpeg
 Bus info : virtio:stateful-decoder
 Driver version : 5.17.0
 Capabilities : 0x84204000
 Video Memory-to-Memory Multiplanar
 Streaming
 Extended Pix Format
 Device Capabilities
 Device Caps : 0x04204000
 Video Memory-to-Memory Multiplanar
 Streaming
 Extended Pix Format

Similarly, you can check the supported output (or CAPTURE) pixel formats for decoded frames:

Test decoding with ffmpeg

FFmpeg can be used to decode video streams with the virtio-video device.

Simple VP8 stream:

This should create 250 PNG files each containing a decoded frame from the stream.

WEBM VP9 stream:

Should create 300 PNG files at 720p resolution.

Test decoding with v4l2r

The v4l2r Rust crate also features an example program that can use this driver to decode simple
H.264 streams:

This will decode test-25fps.h264 and write the raw decoded frames in NV12 format into test-
25fps.nv12 . You can check the result with e.g. YUView.

v4l2-ctl -d/dev/video0 --list-formats-out
ioctl: VIDIOC_ENUM_FMT
 Type: Video Output Multiplanar

 [0]: 'VP90' (VP9, compressed)
 [1]: 'VP80' (VP8, compressed)
 [2]: 'HEVC' (HEVC, compressed)
 [3]: 'H264' (H.264, compressed)

v4l2-ctl -d/dev/video0 --list-formats
ioctl: VIDIOC_ENUM_FMT
 Type: Video Capture Multiplanar

 [0]: 'NV12' (Y/CbCr 4:2:0)

wget https://github.com/chromium/chromium/raw/main/media/test/data/test-25fps.vp8
ffmpeg -codec:v vp8_v4l2m2m -i test-25fps.vp8 test-25fps-%d.png

wget https://test-
videos.co.uk/vids/bigbuckbunny/webm/vp9/720/Big_Buck_Bunny_720_10s_1MB.webm
ffmpeg -codec:v vp9_v4l2m2m -i Big_Buck_Bunny_720_10s_1MB.webm Big_Buck_Bunny-%d.png

git clone https://github.com/Gnurou/v4l2r
cd v4l2r
wget https://github.com/chromium/chromium/raw/main/media/test/data/test-25fps.h264
cargo run --example simple_decoder test-25fps.h264 /dev/video0 --input_format h264 --
save test-25fps.nv12

https://ffmpeg.org/
https://github.com/Gnurou/v4l2r
https://github.com/IENT/YUView

Test encoding with ffmpeg

FFmpeg can be used to encode video streams with the virtio-video device.

The following examples generates a test clip through libavfilter and encode it using the virtual H.264,
H.265 and VP8 encoder, respectively. (VP9 v4l2m2m support is missing in FFmpeg for some reason.)

H264
ffmpeg -f lavfi -i smptebars=duration=10:size=640x480:rate=30 \
 -pix_fmt nv12 -c:v h264_v4l2m2m smptebars.h264.mp4
H265
ffmpeg -f lavfi -i smptebars=duration=10:size=640x480:rate=30 \
 -pix_fmt yuv420p -c:v hevc_v4l2m2m smptebars.h265.mp4
VP8
ffmpeg -f lavfi -i smptebars=duration=10:size=640x480:rate=30 \
 -pix_fmt yuv420p -c:v vp8_v4l2m2m smptebars.vp8.webm

https://ffmpeg.org/

Vhost-user devices
Crosvm supports vhost-user devices for most virtio devices (block, net, etc) so that device emulation
can be done outside of the main vmm process.

Here is a diagram showing how vhost-user block device back-end and a vhost-user block front-end
in crosvm VMM work together.

How to run

Let's take a block device as an example and see how to start vhost-user devices.

First, start vhost-user block backend with crosvm devices command, which waits for a vmm
process connecting to the socket.

Then, open another terminal and start a vmm process with --vhost-user-blk flag.

One-time commands to create a disk image.
fallocate -l 1G disk.img
mkfs.ext4 disk.img

VHOST_USER_SOCK=/tmp/vhost-user.socket

Start vhost-user block backend listening on $VHOST_USER_SOCK
crosvm devices --block vhost=${VHOST_USER_SOCK},path=disk.img

https://qemu.readthedocs.io/en/latest/interop/vhost-user.html

As a result, disk.img should be exposed as /dev/vda just like with --block disk.img .

crosvm run \
 --vhost-user-blk "${VHOST_USER_SOCK}" \
 <usual crosvm arguments>
 /path/to/bzImage

Virtio Vhost-User device (VVU)
Crosvm also supports the virtio vhost-user (VVU) device to run a vhost-user device back-end inside of
another VM's guest. The following diagram shows how VVU works for virtio-block.

The "virtio vhost-user device", which is also called "vvu-proxy", is a virtio PCI device that works as a
proxy of vhost-user messages between the vhost-user device back-end in the guest of a VM (device
VM) and the vhost-user front-end in another VM (sibling VM).

How to run

Let's take a block device as an example and see how to start VVU devices.

First, start a device VM with a usual crosvm run command. At this time, put a crosvm binary in the
guest in some way. (e.g. putting it in a disk, sharing the host's crosvm with virtiofs, building crosvm in
the guest, etc). Also, make sure that the guest kernel is configured properly with virtio and vfio
features enabled (see caveat).

https://wiki.qemu.org/Features/VirtioVhostUser

Then you can check that the VVU proxy device is allocated at the specified address by running
lspci in the guest.

After that you need to make sure that the VVU device is bound to vfio_pci driver by manipulating
sysfs.

Then, start a VVU block device backend in the guest that you just started. Although the command
crosvm device is the same as vhost-user's example, you need to use the --vfio flag instead of the
--socket flag.

Finally, open another terminal and start a vmm process with --vhost-user-blk flag on the host.
The current implementation of crosvm only allows a sibling VM to have a smaller memory size than
the device VM, so make sure to specify the memory size correctly.

On the host.

VHOST_USER_SOCK=/tmp/vhost-user.socket

Specify the PCI address that the VVU proxy device will be allocated.
If you don't pass `addr=` as an argument of `--vvu-proxy` below, crosvm will
allocate it to the first available address.
VVU_PCI_ADDR="0000:00:10.0"

Start the device VM with '-p "vfio_iommu_type1.allow_unsafe_interrupts=1"'.
crosvm run \
 --vvu-proxy "${VHOST_USER_SOCK},addr=${VVU_PCI_ADDR}" \
 -p "vfio_iommu_type1.allow_unsafe_interrupts=1" \
 -m 4096 \ # Make sure that the device kernel has enough memory to be used
 ... # usual crosvm args
 /path/to/bzImage

Inside of the device VM guest.

lspci -s $VVU_PCI_ADDR
Expected output:
> 00:10.0 Unclassified device [00ff]: Red Hat, Inc. Device 107d (rev 01)
'107d' is the device ID for the VVU proxy device.

Inside of the device VM guest.
basename `readlink /sys/bus/pci/devices/$VVU_PCI_ADDR/driver`
If that shows vfio-pci you are done, otherwise you need to rebind
the device to the right driver.
echo "vfio-pci" > /sys/bus/pci/devices/$VVU_PCI_ADDR/driver_override
echo "$VVU_PCI_ADDR" > /sys/bus/pci/devices/$VVU_PCI_ADDR/driver/unbind
echo "$VVU_PCI_ADDR" > /sys/bus/pci/drivers/vfio-pci/bind
basename `readlink /sys/bus/pci/devices/$VVU_PCI_ADDR/driver`
This should show "vfio-pci" now.

Inside of the device VM guest.

crosvm device block \
 --vfio ${VVU_PCI_ADDR} \
 --file disk.img

https://crosvm.dev/book/devices/vhost_user.html

As a result, disk.img in the device VM should be exposed as /dev/vda in the guest of the sibling
VM.

Caveats

In order to use the VVU feature, the Device VM kernel is required to be configured with couple
of vfio features. Note that the name of the config may vary depending on the version of the
kernel. We expect that the readers follow the instructions in this page to create a custom
kernel. In addition to the instruction, the required configurations in the Linux Kernel version
5.10 are:

CONFIG_ACPI
CONFIG_VFIO
CONFIG_VFIO_PCI
CONFIG_VIRTIO_IOMMU

Currently, the sibling VM is required to have less memory than the device VM. Make sure that
the memory size is explicitly defined when starting the VM for both device and sibling VMs.

On the host, start a sibling VM. This can be done in the same way as the vhost-user
block front-end.

crosvm run \
 --vhost-user-blk ${VHOST_USER_SOCK} \
 -m 512 \ # Make sure that the sibling VM does not have same or more memory than the
device VM
 ... # usual crosvm args
 /path/to/bzImage

https://crosvm.dev/book/running_crosvm/custom_kernel_rootfs.html

Crosvm System Integration
The following sections describe how crosvm is integrated into other projects.

Crosvm on ChromeOS
A copy of crosvm is included in the ChromeOS source tree at chromiumos/platform/crosvm, which is
referred to as downstream crosvm.

All crosvm development is happening upstream at crosvm/crosvm. Changes from upstream crosvm
are regularly merged with ChromeOS's downstream crosvm.

The merge process.

A crosvm bot will regularly generate automated commits that merge upstream crosvm into
downstream. These commits can be found in gerrit.

The crosvm team is submitting these merges through the ChromeOS CQ regularly, which happens
roughly once per week, but time can vary depending on CQ health.

Googlers can find more information on the merge process at go/crosvm/playbook

Building crosvm for ChromeOS

crosvm on ChromeOS is usually built with Portage, so it follows the same general workflow as any
cros_workon package. The full package name is chromeos-base/crosvm .

The developer guide section on Make your Changes applies to crosvm as well. You can build crosvm
with cros_workon_make :

Deploy it via cros deploy :

Iterative test runs can be done as well:

Warning: cros_workon_make patches the local Cargo.toml file. Please do not submit these changes.

cros_workon --board=${BOARD} start crosvm
cros_workon_make --board=${BOARD} crosvm

cros_workon_make --board=${BOARD} --install crosvm
cros deploy ${IP} crosvm

cros_workon_make --board=${BOARD} --test crosvm

https://chromium.googlesource.com/chromiumos/platform/crosvm
https://chromium.googlesource.com/crosvm/crosvm
https://chromium-review.googlesource.com/q/hashtag:crosvm-merge
http://go/crosvm/playbook
https://chromium.googlesource.com/chromiumos/docs/+/main/developer_guide.md#make-your-changes

Rebuilding all crosvm dependencies

Crosvm has a lot of rust dependencies that are installed into a registry inside cros_sdk. After a repo
sync these can be out of date, causing compilation issues. To make sure all dependencies are up to
date, run:

Building crosvm for Linux

emerge and cros_workon_make workflows can be quite slow to work with, hence a lot of developers
prefer to use standard cargo workflows used upstream.

Just make sure to initialize git submodules (git submodules update --init), which is not done by
repo. After that, you can use the workflows as outlined in Building Crosvm outside of cros_sdk.

Note: You can not build or test ChromeOS specific features this way.

Submitting Changes

All changes to crosvm are made upstream, using the same process outlined in Contributing. It is
recommended to use the Building crosvm for Linux setup above to run upstream presubmit checks /
formatting tools / etc when submitting changes.

Code submitted upstream is tested on linux, but not on ChromeOS devices. Changes will only be
tested on the ChromeOS CQ when they go through the merge process.

Has my change landed in ChromeOS (Googlers only)?

You can use the crosland tool to check in which ChromeOS version your changes have been merged
into the chromiumos/platform/crosvm repository.

The merge will also contain all BUG= references that will notify your bugs about when the change is
submitted.

For more details on the process, please see go/crosvm-playbook (Google only).

Cq-Depend

We cannot support Cq-Depend to sychronize changes with other ChromeOS repositories. Please
try to make changes in a backwards compatible way to allow them to be submitted independently.

emerge-${BOARD} --update --deep -j$(nproc) crosvm

https://crosvm.dev/book/building_crosvm.html
https://crosvm.dev/book/contributing/index.html
http://crosland/cl
https://chromium.googlesource.com/chromiumos/platform/crosvm
http://go/crosvm-playbook

If it cannot be avoided at all, please follow this process:

1. Upload your change to upstream crosvm and get it reviewed. Do not submit it yet.
2. Upload the change to chromiumos/platform/crosvm as well.
3. Use Cq-Depend on the ChromeOS changes and submit it via the CQ.
4. After the changes landed in ChromeOS, land them upstream as well.

Cherry-picking

If you need your changes faster than the usual merge frequency, please follow this process:

1. Upload and submit your change to upstream crosvm.
2. Upload the change to chromiumos/platform/crosvm as well.
3. Submit as usual through the CQ.

Never submit code just to ChromeOS, as it will cause upstream to diverge and result in merge
conflicts down the road.

https://chromium.googlesource.com/chromiumos/platform/crosvm
https://chromium.googlesource.com/chromiumos/platform/crosvm

Architecture
The principle characteristics of crosvm are:

A process per virtual device, made using fork
Each process is sandboxed using minijail
Takes full advantage of KVM and low-level Linux syscalls, and so only runs on Linux
Written in Rust for security and safety

A typical session of crosvm starts in main.rs where command line parsing is done to build up a
Config structure. The Config is used by run_config in linux/mod.rs to setup and execute a VM.

Broken down into rough steps:

1. Load the linux kernel from an ELF file.
2. Create a handful of control sockets used by the virtual devices.
3. Invoke the architecture specific VM builder Arch::build_vm (located in x86_64/src/lib.rs or

aarch64/src/lib.rs).
4. Arch::build_vm will itself invoke the provided create_devices function from linux/mod.rs
5. create_devices creates every PCI device, including the virtio devices, that were configured in

Config , along with matching minijail configs for each.
6. Arch::assign_pci_addresses assigns an address to each PCI device, prioritizing devices that

report a preferred slot by implementing the PciDevice trait's preferred_address function.
7. Arch::generate_pci_root , using a list of every PCI device with optional Minijail , will finally

jail the PCI devices and construct a PciRoot that communicates with them.
8. Once the VM has been built, it's contained within a RunnableLinuxVm object that is used by the

VCPUs and control loop to service requests until shutdown.

Forking

During the device creation routine, each device will be created and then wrapped in a ProxyDevice
which will internally fork (but not exec) and minijail the device, while dropping it for the main
process. The only interaction that the device is capable of having with the main process is via the
proxied trait methods of BusDevice , shared memory mappings such as the guest memory, and file
descriptors that were specifically allowed by that device's security policy. This can lead to some
surprising behavior to be aware of such as why some file descriptors which were once valid are now
invalid.

Sandboxing Policy

Every sandbox is made with minijail and starts with create_base_minijail in
linux/jail_helpers.rs which set some very restrictive settings. Linux namespaces and seccomp

filters are used extensively. Each seccomp policy can be found under

https://android.googlesource.com/platform/external/minijail
https://android.googlesource.com/platform/external/minijail
https://android.googlesource.com/platform/external/minijail
https://android.googlesource.com/platform/external/minijail

seccomp/{arch}/{device}.policy and should start by @include -ing the common_device.policy .
With the exception of architecture specific devices (such as Pl030 on ARM or I8042 on x86_64),
every device will need a different policy for each supported architecture.

The VM Control Sockets

For the operations that devices need to perform on the global VM state, such as mapping into guest
memory address space, there are the vm control sockets. There are a few kinds, split by the type of
request and response that the socket will process. This also proves basic security privilege
separation in case a device becomes compromised by a malicious guest. For example, a rogue
device that is able to allocate MSI routes would not be able to use the same socket to (de)register
guest memory. During the device initialization stage, each device that requires some aspect of VM
control will have a constructor that requires the corresponding control socket. The control socket
will get preserved when the device is sandboxed and the other side of the socket will be waited on in
the main process's control loop.

The socket exposed by crosvm with the --socket command line argument is another form of the
VM control socket. Because the protocol of the control socket is internal and unstable, the only
supported way of using that resulting named unix domain socket is via crosvm command line
subcommands such as crosvm stop .

GuestMemory

GuestMemory and its friends VolatileMemory , VolatileSlice , MemoryMapping , and SharedMemory ,
are common types used throughout crosvm to interact with guest memory. Know which one to use
in what place using some guidelines

GuestMemory is for sending around references to all of the guest memory. It can be cloned
freely, but the underlying guest memory is always the same. Internally, it's implemented using
MemoryMapping and SharedMemory . Note that GuestMemory is mapped into the host address

space (for non-protected VMs), but it is non-contiguous. Device memory, such as mapped DMA-
Bufs, are not present in GuestMemory .
SharedMemory wraps a memfd and can be mapped using MemoryMapping to access its data.
SharedMemory can't be cloned.
VolatileMemory is a trait that exposes generic access to non-contiguous memory.
GuestMemory implements this trait. Use this trait for functions that operate on a memory space

but don't necessarily need it to be guest memory.
VolatileSlice is analogous to a Rust slice, but unlike those, a VolatileSlice has data that

changes asynchronously by all those that reference it. Exclusive mutability and data
synchronization are not available when it comes to a VolatileSlice . This type is useful for
functions that operate on contiguous shared memory, such as a single entry from a scatter
gather table, or for safe wrappers around functions which operate on pointers, such as a read
or write syscall.

MemoryMapping is a safe wrapper around anonymous and file mappings. Provides RAII and
does munmap after use. Access via Rust references is forbidden, but indirect reading and
writing is available via VolatileSlice and several convenience functions. This type is most
useful for mapping memory unrelated to GuestMemory .

See memory layout for details how crosvm arranges the guest address space.

Device Model

Bus/BusDevice

The root of the crosvm device model is the Bus structure and its friend the BusDevice trait. The
Bus structure is a virtual computer bus used to emulate the memory-mapped I/O bus and also I/O

ports for x86 VMs. On a read or write to an address on a VM's bus, the corresponding Bus object is
queried for a BusDevice that occupies that address. Bus will then forward the read/write to the
BusDevice . Because of this behavior, only one BusDevice may exist at any given address. However,

a BusDevice may be placed at more than one address range. Depending on how a BusDevice was
inserted into the Bus , the forwarded read/write will be relative to 0 or to the start of the address
range that the BusDevice occupies (which would be ambiguous if the BusDevice occupied more
than one range).

Only the base address of a multi-byte read/write is used to search for a device, so a device
implementation should be aware that the last address of a single read/write may be outside its
address range. For example, if a BusDevice was inserted at base address 0x1000 with a length of
0x40, a 4-byte read by a VCPU at 0x39 would be forwarded to that BusDevice .

Each BusDevice is reference counted and wrapped in a mutex, so implementations of BusDevice
need not worry about synchronizing their access across multiple VCPUs and threads. Each VCPU will
get a complete copy of the Bus , so there is no contention for querying the Bus about an address.
Once the BusDevice is found, the Bus will acquire an exclusive lock to the device and forward the
VCPU's read/write. The implementation of the BusDevice will block execution of the VCPU that
invoked it, as well as any other VCPU attempting access, until it returns from its method.

Most devices in crosvm do not implement BusDevice directly, but some are examples are i8042
and Serial . With the exception of PCI devices, all devices are inserted by architecture specific code
(which may call into the architecture-neutral arch crate). A BusDevice can be proxied to a
sandboxed process using ProxyDevice , which will create the second process using a fork, with no
exec.

PciConfigIo/PciConfigMmio

In order to use the more complex PCI bus, there are a couple adapters that implement BusDevice
and call into a PciRoot with higher level calls to config_space_read / config_space_write . The
PciConfigMmio is a BusDevice for insertion into the MMIO Bus for ARM devices. For x86_64,

https://crosvm.dev/book/appendix/memory_layout.html

PciConfigIo is inserted into the I/O port Bus . There is only one implementation of PciRoot that is
used by either of the PciConfig* structures. Because these devices are very simple, they have very
little code or state. They aren't sandboxed and are run as part of the main process.

PciRoot/PciDevice/VirtioPciDevice

The PciRoot , analogous to BusDevice for Bus s, contains all the PciDevice trait objects. Because
of a shortcut (or hack), the ProxyDevice only supports jailing BusDevice traits. Therefore, PciRoot
only contains BusDevice s, even though they also implement PciDevice . In fact, every PciDevice
also implements BusDevice because of a blanket implementation (impl<T: PciDevice> BusDevice
for T { … }). There are a few PCI related methods in BusDevice to allow the PciRoot to still
communicate with the underlying PciDevice (yes, this abstraction is very leaky). Most devices will
not implement PciDevice directly, instead using the VirtioPciDevice implementation for virtio
devices, but the xHCI (USB) controller is an example that implements PciDevice directly. The
VirtioPciDevice is an implementation of PciDevice that wraps a VirtioDevice , which is how the

virtio specified PCI transport is adapted to a transport agnostic VirtioDevice implementation.

VirtioDevice

The VirtioDevice is the most widely implemented trait among the device traits. Each of the
different virtio devices (block, rng, net, etc.) implement this trait directly and they follow a similar
pattern. Most of the trait methods are easily filled in with basic information about the specific device,
but activate will be the heart of the implementation. It's called by the virtio transport after the
guest's driver has indicated the device has been configured and is ready to run. The virtio device
implementation will receive the run time related resources (GuestMemory , Interrupt , etc.) for
processing virtio queues and associated interrupts via the arguments to activate , but activate
can't spend its time actually processing the queues. A VCPU will be blocked as long as activate is
running. Every device uses activate to launch a worker thread that takes ownership of run time
resources to do the actual processing. There is some subtlety in dealing with virtio queues, so the
smart thing to do is copy a simpler device and adapt it, such as the rng device (rng.rs).

Communication Framework

Because of the multi-process nature of crosvm, communication is done over several IPC primitives.
The common ones are shared memory pages, unix sockets, anonymous pipes, and various other file
descriptor variants (DMA-buf, eventfd, etc.). Standard methods (read / write) of using these
primitives may be used, but crosvm has developed some helpers which should be used where
applicable.

WaitContext

Most threads in crosvm will have a wait loop using a WaitContext , which is a wrapper around a
epoll on Linux and WaitForMultipleObjects on Windows. In either case, waitable objects can be

added to the context along with an associated token, whose type is the type parameter of
WaitContext . A call to the wait function will block until at least one of the waitable objects has

become signaled and will return a collection of the tokens associated with those objects. The tokens
used with WaitContext must be convertible to and from a u64 . There is a custom derive #
[derive(EventToken)] which can be applied to an enum declaration that makes it easy to use your
own enum in a WaitContext .

Linux Platform Limitations

The limitations of WaitContext on Linux are the same as the limitations of epoll . The same FD can
not be inserted more than once, and the FD will be automatically removed if the process runs out of
references to that FD. A dup / fork call will increment that reference count, so closing the original FD
will not actually remove it from the WaitContext . It is possible to receive tokens from WaitContext
for an FD that was closed because of a race condition in which an event was registered in the
background before the close happened. Best practice is to keep an FD open and remove it from
the WaitContext before closing it so that events associated with it can be reliably eliminated.

serde with Descriptors

Using raw sockets and pipes to communicate is very inconvenient for rich data types. To help make
this easier and less error prone, crosvm uses the serde crate. To allow transmitting types with
embedded descriptors (FDs on Linux or HANDLEs on Windows), a module is provided for sending
and receiving descriptors alongside the plain old bytes that serde consumes.

Code Map

Source code is organized into crates, each with their own unit tests.

./src/ - The top-level binary front-end for using crosvm.
aarch64 - Support code specific to 64 bit ARM architectures.
base - Safe wrappers for system facilities which provides cross-platform-compatible interfaces.
bin - Scripts for code health such as wrappers of rustfmt and clippy .
ci - Scripts for continuous integration.
cros_async - Runtime for async/await programming. This crate provides a Future executor

based on io_uring and one based on epoll .
devices - Virtual devices exposed to the guest OS.
disk - Library to create and manipulate several types of disks such as raw disk, qcow, etc.
hypervisor - Abstract layer to interact with hypervisors. For Linux, this crate is a wrapper of
kvm .

https://crosvm.dev/doc/base/struct.WaitContext.html
https://en.wikipedia.org/wiki/Qcow

e2e_tests - End-to-end tests that run a crosvm VM.
kernel_loader - Loads elf64 kernel files to a slice of memory.
kvm_sys - Low-level (mostly) auto-generated structures and constants for using KVM.
kvm - Unsafe, low-level wrapper code for using kvm_sys .
media/libvda - Safe wrapper of libvda, a ChromeOS HW-accelerated video decoding/encoding

library.
net_sys - Low-level (mostly) auto-generated structures and constants for creating TUN/TAP

devices.
net_util - Wrapper for creating TUN/TAP devices.
qcow_util - A library and a binary to manipulate qcow disks.
seccomp - Contains minijail seccomp policy files for each sandboxed device. Because some

syscalls vary by architecture, the seccomp policies are split by architecture.
sync - Our version of std::sync::Mutex and std::sync::Condvar .
third_party - Third-party libraries which we are maintaining on the ChromeOS tree or the

AOSP tree.
vfio_sys - Low-level (mostly) auto-generated structures, constants and ioctls for VFIO.
vhost - Wrappers for creating vhost based devices.
virtio_sys - Low-level (mostly) auto-generated structures and constants for interfacing with

kernel vhost support.
vm_control - IPC for the VM.
vm_memory - Vm-specific memory objects.
x86_64 - Support code specific to 64 bit intel machines.

https://chromium.googlesource.com/chromiumos/platform2/+/refs/heads/main/arc/vm/libvda/
https://en.wikipedia.org/wiki/Qcow
https://www.kernel.org/doc/html/latest/driver-api/vfio.html

Contributing

Intro

This article goes into detail about multiple areas of interest to contributors, which includes
reviewers, developers, and integrators who each share an interest in guiding crosvm's direction.

Bug Reports

We use Google issue tracker. Please use the public crosvm component.

For Googlers: See go/crosvm#filing-bugs.

Philosophy

The following is high level guidance for producing contributions to crosvm.

Prefer mechanism to policy.
Use existing protocols when they are adequate, such as virtio.
Prefer security over code re-use and speed of development.
Only the version of Rust in use by the ChromeOS toolchain is supported. This is ordinarily the
stable version of Rust, but can be behind a version for a few weeks.
Avoid distribution specific code.

Style guidelines

Formatting

To format all code, crosvm defers to rustfmt . In addition, the code adheres to the following rules:

Each use statement should import a single item, as produced by rustfmt with
imports_granularity=item . Do not use braces to import multiple items.

The use statements for each module should be grouped into blocks separated by whitespace in the
order produced by rustfmt with group_imports=StdExternalCrate and sorted alphabetically:

1. std
2. third-party + crosvm crates

https://issuetracker.google.com/issues?q=status:open%20componentid:1161302
https://goto.google.com/crosvm#filing-bugs
https://rust-lang.github.io/rustfmt/?version=v1.5.1&search=#imports_granularity
https://rust-lang.github.io/rustfmt/?version=v1.5.1&search=#group_imports

3. crate + super

The import formatting options of rustfmt are currently unstable, so these are not enforced
automatically. If a nightly Rust toolchain is present, it is possible to automatically reformat the code
to match these guidelines by running tools/fmt --nightly .

crosvm uses the remain crate to keep error enums sorted, along with the #[sorted] attribute to
keep their corresponding match statements in the same order.

Unit test code

Unit tests and other highly-specific tests (which may include some small, but not all, integration
tests) should be written differently than how non-test code is written. Tests prevent regressions
from being committed, show how APIs can be used, and help with understanding bugs in code. That
means tests must be clear both now and in the future to a developer with low familiarity of the code
under test. They should be understandable by reading from top to bottom without referencing any
other code. Towards these goals, tests should:

To a reasonable extent, be structured as Arrange-Act-Assert.
Test the minimum number of behaviors in a single test. Make separate tests for separate
behavior.
Avoid helper methods that send critical inputs or assert outputs within the helper itself. It
should be easy to read a test and determine the critical inputs/outputs without digging through
helper methods. Setup common to many tests is fine to factor out, but lean toward duplicating
code if it aids readability.
Avoid branching statements like conditionals and loops (which can make debugging more
difficult).
Document the reason constants were chosen in the test, including if they were picked
arbitrarily such that in the future, changing the value is okay. (This can be done with constant
variable names, which is ideal if the value is used more than once, or in a comment.)
Name tests to describe what is being tested and the expected outcome, for example
test_foo_invalid_bar_returns_baz .

Less-specific tests, such as most integration tests and system tests, are more likely to require
obfuscating work behind helper methods. It is still good to strive for clarity and ease of debugging in
those tests, but they do not need to follow these guidelines.

Contributing Code

Prerequisites

You need to set up a user account with gerrit. Once logged in, you can obtain HTTP Credentials to set
up git to upload changes.

https://github.com/dtolnay/remain
https://chromium-review.googlesource.com/
https://chromium-review.googlesource.com/settings/#HTTPCredentials

Once set up, run ./tools/cl to install the gerrit commit message hook. This will insert a unique
"Change-Id" into all commit messages so gerrit can identify changes.

Contributor License Agreement

Contributions to this project must be accompanied by a Contributor License Agreement (CLA). You
(or your employer) retain the copyright to your contribution; this simply gives us permission to use
and redistribute your contributions as part of the project. Head over to
https://cla.developers.google.com/ to see your current agreements on file or to sign a new one.

You generally only need to submit a CLA once, so if you've already submitted one (even if it was for a
different project), you probably don't need to do it again.

Commit Messages

As for commit messages, we follow ChromeOS's guideline in general.

Here is an example of a good commit message:

The first line is a subject that starts with a tag that represents which components your commit
relates to. Tags are usually the name of the crate you modified such as devices: or base: . If
you only modified a specific component in a crate, you can specify the path to the component
as a tag like devices: vhost: user: . If your commit modified multiple crates, specify the crate
where your main change exists. The subject should be no more than 50 characters, including
any tags.
The body should consist of a motivation followed by an impact/action. The body text should be
wrapped to 72 characters.
BUG lines are used to specify an associated issue number. If the issue is filed at Google's issue

tracker, write BUG=b:<bug number> . If no issue is associated, write BUG=None . You can have
multiple BUG lines.
TEST lines are used to describe how you tested your commit in a free form. You can have

multiple TEST lines.
Change-Id is used to identify your change on Gerrit. It's inserted by the gerrit commit message

hook as explained in the previous section. If a new commit is uploaded with the same Change-
Id as an existing CL's Change-Id , gerrit will recognize the new commit as a new patchset of
the existing CL.

devices: vhost: user: vmm: Add Connection type

This abstracts away the cross-platform differences: cfg(unix) uses a
Unix domain stream socket to connect to the vhost-user backend, and
cfg(windows) uses a Tube.

BUG=b:249361790
TEST=tools/presubmit --all

Change-Id: I47651060c2ce3a7e9f850b7ed9af8bd035f82de6

https://cla.developers.google.com/
https://chromium.googlesource.com/chromiumos/docs/+/HEAD/contributing.md#commit-messages
https://issuetracker.google.com/

Uploading changes

To make changes to crosvm, start your work on a new branch tracking origin/main .

After making the necessary changes, and testing them via Presubmit Checks, you can commit and
upload them:

If you need to revise your change, you can amend the existing commit and upload again:

This will create a new version of the same change in gerrit.

Note: We don't accept any pull requests on the GitHub mirror.

Getting Reviews

All submissions needs to be reviewed by one of the crosvm owners. Use the gerrit UI to request a
review. If you are uncertain about the correct person to review, reach out to the team via chat or
email list.

Submitting code

Crosvm uses a Commit Queue, which will run pre-submit testing on all changes before merging
them into crosvm.

Once one of the crosvm owners has voted "Code-Review+2" on your change, you can use the
"Submit to CQ" button, which will trigger the test process.

Gerrit will show any test failures. Refer to Building Crosvm for information on how to run the same
tests locally.

When all tests pass, your change is merged into origin/main .

git checkout --branch myfeature --track origin/main

git commit
./tools/cl upload

git commit --amend
./tools/cl upload

https://crosvm.dev/book/building_crosvm.html#presubmit-checks
https://github.com/google/crosvm
https://chromium.googlesource.com/crosvm/crosvm/+/HEAD/OWNERS
https://matrix.to/#/#crosvm:matrix.org
https://groups.google.com/a/chromium.org/g/crosvm-dev
https://chromium.googlesource.com/crosvm/crosvm/+/HEAD/OWNERS
https://crosvm.dev/book/building_crosvm.html

Contributing to the documentation

The book of crosvm is built with mdBook. Each markdown file must follow Google Markdown style
guide.

To render the book locally, you need to install mdbook and mdbook-mermaid, which should be
installed when you run ./tools/install-deps script. Or you can use the tools/dev_container
environment.

Output is found at docs/book/book/html/ .

Note: If you make a certain size of changes, it's recommended to reinstall mdbook manually
with cargo install mdbook , as ./tools/install-deps only installs a binary with some
convenient features disabled. For example, the full version of mdbook allows you to edit files
while checking rendered results.

cd docs/book/
mdbook build

https://crosvm.dev/book/
https://rust-lang.github.io/mdBook/
https://github.com/google/styleguide/blob/gh-pages/docguide/style.md
https://github.com/badboy/mdbook-mermaid

Style guide for platform specific code

Code organization

The crosvm code can heavily interleave platform specific code into platform agnostic code using #
[cfg(target_os = "")] . This is difficult to maintain as

It reduces readability.
Difficult to write/maintain unit tests.
Difficult to maintain downstream, proprietary code

To address the above mentioned issue, the style guide provides a way to standardize platform
specific code layout.

Consider a following example where we have platform independent code, PrintInner , which is
used by platform specific code, WinPrinter and UnixPrinter to tweak the behavior according to
the underlying platform. The users of this module, sys , get to use an aliased struct called Printer
which exports similar interfaces on both the platforms.

In this scheme print.rs contains platform agnostic logic, structures and traits. Different platforms,
in unix.rs and windows.rs , implement traits defined in print.rs . Finally sys.rs exports
interfaces implemented by platform specific code.

In a more complex library, we may need another layer, print.rs , that uses traits and structures
exported by platform specific code, unix/print.rs and windows/print.rs , and adds some more
common logic to it. Following example illustrates the scheme discussed above. Here,
Printer.print() is supposed to print a value of u32 and print the target os name.

The files that contain platform specific code only should live in a directory named sys/ and those
files should be conditionally imported in sys.rs file. In such a setup, the directory structure would
look like,

File: print.rs

$ tree
.
├── print.rs
├── sys
│ ├── unix
│ │ └── print.rs
│ ├── unix.rs
│ ├── windows
│ │ └── print.rs
│ └── windows.rs
└── sys.rs

File: sys/windows/print.rs

File: sys/unix/print.rs

pub struct PrintInner {
 pub value: u32,
}

impl PrintInner {
 pub fn new(value: u32) -> Self {
 Self { value }
 }

 pub fn print(&self) {
 print!("My value:{} ", self.value);
 }
}

// This is useful if you want to
// * Enforce interface consistency or
// * Have more than one compiled-in struct to provide the same api.
// Say a generic gpu driver and high performance proprietary driver
// to coexist in the same namespace.
pub trait Print {
 fn print(&self);
}

use crate::print::{Print, PrintInner};

pub struct WinPrinter {
 inner: PrintInner,
}

impl WinPrinter {
 pub fn new(value: u32) -> Self {
 Self {
 inner: PrintInner::new(value),
 }
 }
}

impl Print for WinPrinter {
 fn print(&self) {
 self.inner.print();
 println!("from win");
 }
}

File: sys.rs

Imports

When conditionally importing and using modules, use cfg(unix) and cfg(windows) for describing
the platform. Order imports such that common comes first followed by unix and windows
dependencies.

use crate::print::{Print, PrintInner};

pub struct UnixPrinter {
 inner: PrintInner,
}

impl UnixPrinter {
 pub fn new(value: u32) -> Self {
 Self {
 inner: PrintInner::new(value),
 }
 }
}

impl Print for UnixPrinter {
 fn print(&self) {
 self.inner.print();
 println!("from unix");
 }
}

cfg_if::cfg_if! {
 if #[cfg(unix)] {
 mod unix;
 pub use platform_print::UnixPrinter as Printer;
 } else if #[cfg(windows)] {
 mod windows;
 pub use platform_print::WinPrinter as Printer;
 }
}

Structure

It is OK to have a few platform specific fields inlined with cfgs. When inlining

Ensure that all the fields of a particular platform are next to each other.
Organize common fields first and then platform specific fields ordered by the target os name
i.e. "unix" first and "windows" later.

If the structure has a large set of fields that are platform specific, it is more readable to split it into
different platform specific structures and have their implementations separate. If necessary,
consider defining a crate in platform independent and have the platform specific files implement
parts of those traits.

Enum

When enums need to have platform specific variants

Create a new platform specific enum and move all platform specific variants under the new
enum
Introduce a new variant, which takes a platform specific enum as member, to platform
independent enum.

Do

File: sys/unix/base.rs

// All other imports

#[cfg(unix)]
use {
 std::x::y,
 base::a::b::{Foo, Bar},
 etc::Etc,
};

#[cfg(windows)]
use {
 std::d::b,
 base::f::{Foo, Bar},
 etc::{WinEtc as Etc},
};

File: sys/windows/base.rs

File: base.rs

Don't

File: base.rs

enum MyEnumSys {
 Unix1,
}

fn handle_my_enum_impl(e: MyEnumSys) {
 match e {
 Unix1 => {..},
 };
}

enum MyEnumSys {
 Windows1,
}

fn handle_my_enum_impl(e: MyEnumSys) {
 match e {
 Windows1 => {..},
 };
}

use sys::MyEnumSys;
enum MyEnum {
 Common1,
 Common2,
 SysVariants(MyEnumSys),
}

fn handle_my_enum(e: MyEnum) {
 match e {
 Common1 => {..},
 Common2 => {..},
 SysVariants(v) => handle_my_enum_impl(v),
 };
}

Code blocks and functions

If a code block or a function has little platform independent code and the bulk of the code is
platform specific then carve out platform specific code into a function. If the carved out function
does most of what the original function was doing and there is no better name for the new function
then the new function can be named by appending _impl to the functions name.

Do

File: base.rs

File: sys/unix/base.rs

File: sys/windows/base.rs

enum MyEnum {
 Common1,
 Common2,
 #[cfg(target_os = "windows")]
 Windows1, // We shouldn't have platform-specific variants in a platform-independent
enum.
 #[cfg(target_os = "unix")]
 Unix1, // We shouldn't have platform-specific variants in a platform-independent
enum.
}

fn handle_my_enum(e: MyEnum) {
 match e {
 Common1 => {..},
 Common2 => {..},
 #[cfg(target_os = "windows")]
 Windows1 => {..}, // We shouldn't have platform-specific match arms in a platform-
independent code.
 #[cfg(target_os = "unix")]
 Unix1 => {..}, // We shouldn't have platform-specific match arms in a platform-
independent code.
 };
}

fn my_func() {
 print!("Hello ");
 my_func_impl();
}

fn my_func_impl() {
 println!("unix");
}

Don't

File: base.rs

match

With an exception to matching enums, see enum, matching for platform specific values can be done
in the wildcard patter(_) arm of the match statement.

Do

File: parse.rs

File: sys/unix/parse.rs

fn my_func_impl() {
 println!("windows");
}

fn my_func() {
 print!("Hello ");

 #[cfg(target_os = "unix")] {
 println!("unix"); // We shouldn't have platform-specific code in a platform-
independent code block.
 }

 #[cfg(target_os = "windows")] {
 println!("windows"); // We shouldn't have platform-specific code in a platform-
independent code block.
 }
}

fn parse_args(arg: &str) -> Result<()>{
 match arg {
 "path" => {
 <multiple lines of logic>;
 Ok(())
 },
 _ => parse_args_impl(arg),
 }
}

File: sys/windows/parse.rs

Don't

File: parse.rs

Errors

Inlining all platform specific error values is ok. This is an exception to the enum to keep error
handling simple. Organize platform independent errors first and then platform specific errors
ordered by the target os name i.e. "unix" first and "windows" later.

fn parse_args_impl(arg: &str) -> Result<()>{
 match arg {
 "fd" => {
 <multiple lines of logic>;
 Ok(())
 },
 _ => Err(ParseError),
 }
}

fn parse_args_impl(arg: &str) -> Result<()>{
 match arg {
 "handle" => {
 <multiple lines of logic>;
 Ok(())
 },
 _ => Err(ParseError),
 }
}

fn parse_args(arg: &str) -> Result<()>{
 match arg {
 "path" => Ok(()),
 #[cfg(target_os = "unix")]
 "fd" => { // We shouldn't have platform-specific match arms in a platform-
independent code.
 <multiple lines of logic>;
 Ok(())
 },
 #[cfg(target_os = "windows")]
 "handle" => { // We shouldn't have platform-specific match arms in a platform-
independent code.
 <multiple lines of logic>;
 Ok(())
 },
 _ => Err(ParseError),
 }
}

Platform specific symbols

If a platform exports symbols that are specific to the platform only and are not exported by all other
platforms then those symbols should be made public through a namespace that reflects the name
of the platform.

File: sys.rs

File: unix.rs

File: windows.rs

The user of the library, say mylib, now has to do something like below which makes it explicit that
the functions print_u8 and print_u16 are platform specific.

cfg_if::cfg_if! {
 if #[cfg(unix)] {
 pub mod unix;
 use unix as platform;
 } else if #[cfg(windows)] {
 pub mod windows;
 use windows as platform;
 }
}

pub use platform::print;

fn print() {
 println!("Hello unix");
}

fn print_u8(val: u8) {
 println!("Unix u8:{}", val);

}

fn print() {
 println!("Hello windows");
}

fn print_u16(val: u16) {
 println!("Windows u16:{}", val);

}

use mylib::sys::print;

fn my_print() {
 print();

 #[cfg(unix)]
 mylib::sys::unix::print_u8(1);

 #[cfg(windows)]
 mylib::sys::windows::print_u16(1);
}

Onboarding Resources
Various links to useful resources for learning about virtual machines and the technology behind
crosvm.

Talks

Chrome University by zachr (2018, 30m)

Life of a Crostini VM (user click -> terminal opens)
All those French daemons (Concierge, Maitred, Garcon, Sommelier)

NYULG: Crostini by zachr / reveman (2018, 50m)

Overlaps Chrome University talk
More details on wayland / sommelier from reveman
More details on crostini integration of app icons, files, clipboard
Lots of demos

Introductory Resources

OS Basics

OSDev Wiki (A lot of articles on OS development)
PCI Enumeration (Most of our devices are on PCI, this is how they are found)
ACPI Source Language Tutorial

Rust

Rust Cheat Sheet Beautiful website with idiomatic rust examples, overview of pointer- and
container types
Rust Programming Tipz (with a z, that’s how you know it’s cool!)
Rust design patterns repo
Organized collection of blog posts on various Rust topics

https://www.youtube.com/watch?v=2Pc71zYWFDM
https://www.youtube.com/watch?v=WwrXqDERFm8
https://wiki.osdev.org/Main_Page
https://www.khoury.northeastern.edu/~pjd/cs7680/homework/pci-enumeration.html
https://acpica.org/sites/acpica/files/asl_tutorial_v20190625.pdf
https://cheats.rs/
https://github.com/ferrous-systems/elements-of-rust
https://github.com/rust-unofficial/patterns
https://github.com/brson/rust-anthology/blob/master/master-list.md

KVM Virtualization

Low-level tutorial on how to run code via KVM
KVM Hello World sample program (host + guest)
KVM API docs
Awesome Virtualization (Definitely check out the Hypervisor Development section)

Virtio (device emulation)

Good overview of virtio architecture from IBM
Virtio drivers overview by RedHat
Virtio specs (so exciting, I can’t stop reading)
Basics of devices in QEMU

VFIO (Device passthrough)

Introduction to PCI Device Assignment with VFIO

Virtualization History and Basics

By the end of this section you should be able to answer the following questions
What problems do VMs solve?
What is trap-and-emulate?
Why was the x86 instruction set not “virtualizable” with just trap-and-emulate?
What is binary translation? Why is it required?
What is a hypervisor? What is a VMM? What is the difference? (If any)
What problem does paravirtualization solve?
What is the virtualization model we use with Crostini?
What is our hypervisor?
What is our VMM?

CMU slides go over motivation, why x86 instruction set wasn’t “virtualizable” and the good old
trap-and-emulate
Why Intel VMX was needed; what does it do (Link)
What is a VMM and what does it do (Link)
Building a super simple VMM blog article (Link)

Relevant Specs

ACPI Specs
DeviceTree Specs
Vhost-user protocol

https://lwn.net/Articles/658511/
https://github.com/dpw/kvm-hello-world
https://www.kernel.org/doc/html/latest/virt/kvm/api.html
https://github.com/Wenzel/awesome-virtualization
https://developer.ibm.com/articles/l-virtio/
https://www.redhat.com/en/blog/virtio-devices-and-drivers-overview-headjack-and-phone
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://www.qemu.org/2018/02/09/understanding-qemu-devices/
https://www.youtube.com/watch?v=WFkdTFTOTpA
http://www.cs.cmu.edu/~410-f06/lectures/L31_Virtualization.pdf
https://lettieri.iet.unipi.it/virtualization/2018/hardware-assisted-intel-vmx.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/vmm-intro.pdf
https://unixism.net/2019/10/sparkler-kvm-based-virtual-machine-manager/
https://uefi.org/acpi/specs
https://www.devicetree.org/specifications/
https://qemu-project.gitlab.io/qemu/interop/vhost-user.html

Appendix
The following sections contain reference material you may find useful when working on crosvm.
Note that some of contents might be outdated.

Sandboxing

Generally speaking, sandboxing is achieved in crosvm by isolating each virtualized devices into its
own process. A process is always somewhat isolated from another by virtue of being in a different
address space. Depending on the operating system, crosvm will use additional measures to sandbox
the child processes of crosvm by limiting each process to just what it needs to function.

In the example diagram above, the virtio block device exists as a child process of crosvm. It has been
limited to having just the FD needed to access the backing file on the host and has no ability to open
new files. A similar setup exists for other devices like virtio net.

Host Kernel

crosvm Process

Device Process Device Process

guest

guest_kernel

KVM

vcpu0 vcpu1 virtio_net TAP FDvirtio_blk Disk FD

virtio_blk_driver virtio_net_driver

Seccomp
The seccomp system is used to filter the syscalls that sandboxed processes can use. The form of
seccomp used by crosvm (SECCOMP_SET_MODE_FILTER) allows for a BPF program to be used. To
generate the BPF programs, crosvm uses minijail's policy file format. A policy file is written for each
device per architecture. Each device requires a unique set of syscalls to accomplish their function
and each architecture has slightly different naming for similar syscalls. The ChromeOS docs have a
useful listing of syscalls.

Writing a Policy for crosvm

The detailed rules for naming policy files can be found in seccomp/README.md

Most policy files will include the common_device.policy from a given architecture using this
directive near the top:

The common device policy for x86_64 is:

@include /usr/share/policy/crosvm/common_device.policy

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md
https://chromium.googlesource.com/crosvm/crosvm/+/refs/heads/main/seccomp/README.md

@frequency ./common_device.frequency
brk: 1
clock_gettime: 1
clone: arg0 & CLONE_THREAD
clone3: 1
close: 1
dup2: 1
dup: 1
epoll_create1: 1
epoll_ctl: 1
epoll_pwait: 1
epoll_wait: 1
eventfd2: 1
exit: 1
exit_group: 1
futex: 1
getcwd: 1
getpid: 1
gettid: 1
gettimeofday: 1
io_uring_setup: 1
io_uring_register: 1
io_uring_enter: 1
kill: 1
lseek: 1
madvise: arg2 == MADV_DONTNEED || arg2 == MADV_DONTDUMP || arg2 == MADV_REMOVE || arg2
== MADV_MERGEABLE || arg2 == MADV_FREE
membarrier: 1
mmap: arg2 in ~PROT_EXEC
mprotect: arg2 in ~PROT_EXEC
mremap: 1
munmap: 1
nanosleep: 1
clock_nanosleep: 1
pipe2: 1
poll: 1
ppoll: 1
read: 1
readlink: 1
readlinkat: 1
readv: 1
recvfrom: 1
recvmsg: 1
restart_syscall: 1
rseq: 1
rt_sigaction: 1
rt_sigprocmask: 1
rt_sigreturn: 1
sched_getaffinity: 1
sched_yield: 1
sendmsg: 1
sendto: 1
set_robust_list: 1
sigaltstack: 1
write: 1
writev: 1
fcntl: 1
uname: 1

Rules for vmm-swap

The syntax is simple: one syscall per line, followed by a colon : , followed by a boolean expression
used to constrain the arguments of the syscall. The simplest expression is 1 which unconditionally
allows the syscall. Only simple expressions work, often to allow or deny specific flags. A major
limitation is that checking the contents of pointers isn't possible using minijail's policy format. If a
syscall is not listed in a policy file, it is not allowed.

userfaultfd: 1
0xc018aa3f == UFFDIO_API, 0xaa00 == USERFAULTFD_IOC_NEW
ioctl: arg1 == 0xc018aa3f || arg1 == 0xaa00

Memory Layout

x86-64 guest physical memory map

This is a survey of the existing memory layout for crosvm on x86-64 when booting a Linux kernel. Some of
these values are different when booting a BIOS image or when compiled with features=direct (ManaTEE); see
the source. All addresses are in hexadecimal.

Name/source link Address
End

(exclusive)
Size Notes

0000 7000
RAM (may start at
0x1000 for crosvm-
direct)

ZERO_PAGE_OFFSET 7000
Linux boot_params
structure

BOOT_STACK_POINTER 8000 Boot SP value

boot_pml4_addr 9000 Boot page table

boot_pdpte_addr A000 Boot page table

boot_pde_addr B000 Boot page table

CMDLINE_OFFSET 2_0000 20_0000
~1.87
MiB

Linux kernel
command line

ACPI_HI_RSDP_WINDOW_BASE E_0000

ACPI RSDP table
(TODO: technically
overlaps command
line buffer; check
CMDLINE_MAX_SIZE

KERNEL_START_OFFSET 20_0000
Linux kernel image
load address

END_ADDR_BEFORE_32BITS 20_0000 D000_0000
~3.24
GiB

RAM (<4G)

END_ADDR_BEFORE_32BITS D000_0000 F400_0000
576
MiB

Low (<4G) MMIO
allocation area

PCIE_CFG_MMIO_START F400_0000 F800_0000
64
MiB

PCIe enhanced confi
(ECAM)

RESERVED_MEM_SIZE F800_0000 1_0000_0000
128
MiB

LAPIC/IOAPIC/HPET/

TSS_ADDR FFFB_D000
Boot task state
segment

1_0000_0000 RAM (>4G)

(end of RAM)
High (>4G) MMIO
allocation area

https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/lib.rs;l=235?q=ZERO_PAGE_OFFSET
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/lib.rs;l=208?q=BOOT_STACK_POINTER
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/regs.rs;l=310?q=boot_pml4_addr
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/regs.rs;l=311?q=boot_pdpte_addr
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/regs.rs;l=312?q=boot_pde_addr
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/lib.rs;l=239?q=CMDLINE_OFFSET
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/lib.rs;l=252?q=ACPI_HI_RSDP_WINDOW_BASE
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/lib.rs;l=238?q=KERNEL_START_OFFSET
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/lib.rs;l=230?q=END_ADDR_BEFORE_32BITS
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/lib.rs;l=230?q=END_ADDR_BEFORE_32BITS
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/lib.rs;l=227?q=PCIE_CFG_MMIO_START
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/lib.rs;l=224?q=RESERVED_MEM_SIZE
https://crsrc.org/o/src/platform/crosvm-upstream/x86_64/src/lib.rs;l=236?q=TSS_ADDR

aarch64 guest physical memory map

All addresses are IPA in hexadecimal.

Common layout

These apply for all boot modes.

Name/source link Address
End

(exclusive)
Size Notes

SERIAL_ADDR[3] 2e8 2f0 8 bytes
Serial port
MMIO

SERIAL_ADDR[1] 2f8 300 8 bytes
Serial port
MMIO

SERIAL_ADDR[2] 3e8 3f0 8 bytes
Serial port
MMIO

SERIAL_ADDR[0] 3f8 400 8 bytes
Serial port
MMIO

AARCH64_RTC_ADDR 2000 3000 4 KiB
Real-time
clock

AARCH64_VMWDT_ADDR 3000 4000 4 KiB
Watchdog
device

AARCH64_PCI_CFG_BASE 1_0000 2_0000 64 KiB
PCI
configuration
(CAM)

AARCH64_PVTIME_IPA_START 1f0_0000 200_0000 64 KiB
Paravirtualized
time

AARCH64_MMIO_BASE 200_0000 400_0000 32 MiB
Low MMIO
allocation area

AARCH64_GIC_CPUI_BASE 3ffd_0000 3fff_0000
128
KiB

vGIC

AARCH64_GIC_DIST_BASE 3fff_0000 4000_0000 64 KiB vGIC

AARCH64_AXI_BASE 4000_0000

Seemingly
unused? Is this
hard-coded
somewhere in
the kernel?

AARCH64_PROTECTED_VM_FW_START 7fc0_0000 8000_0000 4 MiB
pVM firmware
(if running a
protected VM)

AARCH64_PHYS_MEM_START 8000_0000
--mem
size

RAM (starts at
IPA = 2 GiB)

get_swiotlb_addr after RAM --
swiotlb

Only present
for

https://crsrc.org/o/src/platform/crosvm-upstream/arch/src/serial.rs;l=70?q=SERIAL_ADDR
https://crsrc.org/o/src/platform/crosvm-upstream/arch/src/serial.rs;l=70?q=SERIAL_ADDR
https://crsrc.org/o/src/platform/crosvm-upstream/arch/src/serial.rs;l=70?q=SERIAL_ADDR
https://crsrc.org/o/src/platform/crosvm-upstream/arch/src/serial.rs;l=70?q=SERIAL_ADDR
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=93?q=AARCH64_RTC_ADDR
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=93?q=AARCH64_VMWDT_ADDR
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=100?q=AARCH64_PCI_CFG_BASE
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=59?q=AARCH64_PVTIME_IPA_START
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=104?q=AARCH64_MMIO_BASE
https://crsrc.org/o/src/platform/crosvm-upstream/devices/src/irqchip/kvm/aarch64.rs;l=44?q=AARCH64_GIC_CPUI_BASE
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=64?q=AARCH64_GIC_DIST_BASE
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=45?q=AARCH64_AXI_BASE
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=55?q=AARCH64_PROTECTED_VM_FW_START
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=44?q=AARCH64_PHYS_MEM_START
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs?q=get_swiotlb_addr

Name/source link Address
End

(exclusive)
Size Notes

size hypervisors
requiring
static swiotlb
alloc

plat_mmio_base
after
swiotlb

+0x800000 8 MiB
Platform
device MMIO
region

high_mmio_base
after
plat_mmio

max phys
addr

High MMIO
allocation area

Layout when booting a kernel

These apply when no bootloader is passed, so crosvm boots a kernel directly.

Name/source link Address
End

(exclusive)
Size Notes

AARCH64_KERNEL_OFFSET 8000_0000
Kernel load location
in RAM

initrd_addr after kernel
Linux initrd location
in RAM

fdt_address
before end of
RAM

2
MiB

Flattened device
tree in RAM

Layout when booting a bootloader

These apply when a bootloader is passed with --bios .

Name/source link Address
End

(exclusive)
Size Notes

AARCH64_FDT_OFFSET_IN_BIOS_MODE 8000_0000 8020_0000
2
MiB

Flattened
device tree in
RAM

AARCH64_BIOS_OFFSET 8020_0000
Bootloader
image in
RAM

https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=551?q=plat_mmio_base
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=554?q=high_mmio_base
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=35?q=AARCH64_KERNEL_OFFSET
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=270?q=initrd_addr
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=184?q=fdt_address
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=49?q=AARCH64_FDT_OFFSET_IN_BIOS_MODE
https://crsrc.org/o/src/platform/crosvm-upstream/aarch64/src/lib.rs;l=51?q=AARCH64_BIOS_OFFSET

Minijail
On Linux hosts, crosvm uses minijail to sandbox the child devices. The minijail C library is utilized via
a Rust wrapper so as not to repeat the intricate sequence of syscalls used to make a secure isolated
child process. The fact that minijail was written, maintained, and continuously tested by a
professional security team more than makes up for its being written in an memory unsafe language.

The exact configuration of the sandbox varies by device, but they are mostly alike. See
create_base_minijail from linux/jail_helpers.rs . The set of security constraints explicitly used

in crosvm are:

PID Namespace
Runs as init

Deny setgroups
Optional limit the capabilities mask to 0
User namespace

Optional uid/gid mapping
Mount namespace

Optional pivot into a new root
Network namespace
PR_SET_NO_NEW_PRIVS
seccomp with optional log failure mode
Limit to number of file descriptors

https://google.github.io/minijail/
https://android.googlesource.com/platform/external/minijail/+/refs/heads/master/rust/minijail/src/lib.rs
https://lwn.net/Articles/626665/
https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt
https://crosvm.dev/book/appendix/seccomp.html

Package Documentation
The package documentation generated by cargo doc is available here.

https://crosvm.dev/doc/crosvm/

	1. Introduction
	2. Building Crosvm
	2.1. Building Crosvm On Windows

	3. Testing
	4. Running Crosvm
	4.1. Example Usage
	4.2. Advanced Usage
	4.3. Custom Kernel/Rootfs
	4.4. Options & Configuration Files
	4.5. System Requirements
	4.6. Features
	4.7. Programmatic Interaction

	5. Devices
	5.1. Block
	5.2. Network
	5.3. Balloon
	5.4. Vsock
	5.5. Pmem
	5.6. Wayland
	5.7. Video (experimental)
	5.8. Vhost-user
	5.9. VirtIO Vhost-User (VVU)

	6. Integration
	6.1. ChromeOS

	7. Architecture
	8. Contributing
	8.1. Style Guide For Platform Specific Code

	9. Onboarding Resources
	10. Appendix
	10.1. Sandboxing
	10.2. Seccomp
	10.3. Memory Layout
	10.4. Minijail

	Package Documentation

