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ABSTRACT
As a software system evolves, maintaining the system be-
comes increasingly difficult. A lot of times code changes or
system patches cause an existing feature to misbehave or fail
completely. An issue ticket reporting a defect in a feature
that was working earlier, is known as a Regression Bug. Run-
ning a test suite to validate the new features getting added
and faults introduced in previously working code, after ev-
ery change is impractical. As a result, by the time an issue
is identified and reported a lot of changes are made to the
source code, which makes it very difficult for the developers
to find the regression bug inducing change.

Regression bugs are considered to be inevitable and truism
in large and complex software systems [1]. Issue Tracking
System (ITS) are applications to track and manage issue re-
ports and to archive bug or feature enhancement requests.
Version Control System (VCS) are source code control sys-
tems recording the author, timestamp, commit message and
modified files. We first conduct an in-depth characterization
study of regression bugs by mining issue tracking system
dataset belonging to a large and complex software system
i.e. Google Chromium Project. We then describe our so-
lution approach to find the regression bug inducing change,
based on mining ITS and VCS data. We build a recom-
mendation engine Sarathi1 to assist a bug fixer in locating a
regression bug inducing change and validate the system on
real world Google Chromium project.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids; H.2.8
[Database Applications]: Data mining; K.6.3 [Software
Management]: Software Development

1
Sarathi is a Hindi word which means “helper”. Our recommendation

engine Sarathi aims at helping bug fixers in the process of identifying
regression bug inducing change.
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1. RESEARCH MOTIVATION AND AIM
Software regression bugs are defined as defects which oc-

cur, when a previously working software feature or func-
tionality stops behaving as intended. One of the reasons for
regression bugs is code changes or system patching which
leads to unexpected side effects. Consider a source code
repository S consisting of several files. Let Fp be a software
functionality of S which is working correctly. A developer D
enhances S to S′ to implement another feature Fq by mak-
ing a code change P (patch). A change can have side effects
and it is possible that P breaks Fp. An issue ticket reporting
a defect in Fp (in S′) which is a feature that was working
earlier, is called as a Regression Bug. Regression testing is a
technique consisting of creating a test suite to validate both
the new features getting added as the system evolves, and to
detect if any faults are introduced in previously working and
tested code as a result of a source code change. Conducting
regression testing after every change or some changes to the
code is a solution to immediately detect source code changes
with side effects. However, regression testing is an expen-
sive process because it becomes very time consuming to run
a large number of test-cases or an entire test-suite, covering
all the functionalities of a large and complex software. The
number of test-suites grows as the system evolves and grows,
due to which it becomes impractical to create test-cases for
every functionality, and execute it after a change is made
to the source-code. Regression testing minimization, selec-
tion and prioritization is an area that has attracted several
researcher’s attention [2].

In many scenarios, especially in large and complex sys-
tems applying regression testing after every change is almost
impractical, therefore regression bugs are injected into the
system due to buggy changes which are later reported by
testers or users. Regression bugs are considered to be in-
evitable and truism in large and complex software systems
[1]. Identification of the source code change which caused
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the regression bug is a fundamental problem faced by a bug
fixer or owner who is assigned a regression bug. Locating the
source code change which caused the regression bug is a non-
trivial problem [1][3][4]. Automating hunting of regression
inducing change will help bug fixers in spending their time
in fixing the bug rather than searching for its cause. This
will in turn speed up the bug fixing process. The broad re-
search motivation of the study presented in this paper is to
investigate mining issue tracking system and version control
system based solutions to develop a recommendation engine
(called as Sarathi) to assist a bug fixer in locating a regres-
sion bug inducing change. Following are the specific research
aims of the work presented in this paper:

1. To conduct an in-depth characterization study of re-
gression bugs by mining issue tracking system dataset
belonging to a large and complex software system.

2. To investigate bug report and source-code commit meta-
data and content based mining solution, to develop a
predictive model for identifying a regression bug in-
ducing change. To validate the proposed model and
demonstrate effectiveness of the proposed approach on
real-world dataset belonging to a large and complex
software system.

2. RELATED WORK & CONTRIBUTIONS
In this Section, we discuss closely related work (to the

research presented in this paper) and present the novel re-
search contribution of this paper in context to the existing
work. We organize closely related work into following three
lines of research:

2.1 Regression Bug Hunting and Location
Bowen et al. present a method to automate the process of

identifying which code addition or patch created the regres-
sion (called as regression hunting) [1]. They implement a
solution in Python to test the Linux Kernel using the Linux
Test Project [1]. Johnson et al. describe their experiences in
automating regression hunts for the GCC and Linux kernel
projects [3]. They provide a solution for automated regres-
sion hunts for the Linux kernel based on patch sets rather
than dates [3]. Yorav et al. present a tool called as CodePsy-
chologist which assists a programmer to locate source code
segments that caused a given regression bug [4]. They de-
fine several heuristics based on textual similarity analysis
between text from the test-cases and code-lines and check-
in comments to select the lines most likely to be the cause
of the error [4].

2.2 Regression Bug Prediction
Tarvo et al. propose a statistical model for predicting

software regressions. They investigate the applicability of
software metrics such as type and size of the change, num-
ber of affected components, dependency metrics, developer’s
experience and code metrics of the affected components to
predict risk of regression for a code change [5]. In another
study, Tarvo et al. present a tool called as Binary Change
Tracer (BCT) which collects data on software projects and
helps predict regressions. They conduct a study on Mi-
crosoft Windows operating system dataset and build a sta-
tistical model (based on fix and code metrics) that predicts
each fix’s risk of regression [6]. Mockus et al. develop a

predictive model to predict the probability that a change
to software will cause a failure. The model uses predictors
(such as size in lines of code added, deleted, and unmodi-
fied, diffusion of the change and its component sub-changes
as well as measures based on developer experience) based
on the properties of a change itself [7]. Shihab et al. con-
duct an industrial study on the risk of software changes [8].
Sunghun et al. present an approach to classify a software
change into clean or buggy [9].

2.3 Characterization Study on Bug Types
et al. present a study of mining issue tracking system

to compare and contrast seven different types of bug re-
ports: crash, regression, security, cleanup, polish, perfor-
mance and usability [10]. They compare different bug re-
port types based on statistics such as close-time, number
of stars, number of comments, discriminatory and frequent
words for each class, entropy across reporters, entropy across
component, opening and closing trend, continuity and de-
bugging efficiency performance characteristics [10]. Zaman
et al. conduct a case-study on Firefox project and study two
different types of bugs: performance and security [11]. Za-
man et al. conduct a qualitative study on performance bugs
[12]. Gegick et al. perform an industrial study on identifi-
cation of security bug reports via text mining [13]. Khomh
et al. study crash bug types [14] and Twidale at al. study
usability issues [15].

In context to existing work, the study presented in this
paper makes the following novel contributions:

1. We conduct an in-depth characterization study of re-
gression bugs on Google Chromium dataset showing:
priority, number of comments and closure-time dis-
tribution for regression bugs in comparison to crash,
performance and security bugs. The characterization
study also includes opening and closing trend analysis
and quality of bug fixing process for regression bugs in
comparison to other types of bugs.

2. Although there has been work for identifying source
code change that caused the work, we propose a unique
character n-gram based information retrieval model for
predicting a bug inducing change for given regression
bug report.

3. EXPERIMENTAL DATASET
We conduct our study on large real-world publicly avail-

able dataset so that our experiments can be replicated. The
work presented in this paper holds the required replication
standards ensuring sufficient information for any third party
to replicate the results without any additional information
from us. As an academic, we believe and encourage aca-
demic code or software sharing in the interest of improving
openness and research reproducibility. We release our code
and dataset in public domain so that other researchers can
validate our scientific claims and use our tool for comparison
or benchmarking purposes (and also reusability and exten-
sion). Our code and dataset is hosted on GitHub2which is a
popular web-based hosting service for software development
projects. We select GPL license (restrictive license) so that
our code can never be closed-sourced.

2
https://github.com/ashishsureka/sarathi
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Table 1: Number and Percentage of 8 Bug Report Types in the Experimental Dataset (Labeled Bug Reports)

Bug Type Num Bugs Percentage Bug Type Num Bugs Percentage

1 Crash 11281 28.4% 5 Regression 20263 51.09%

2 Clean Up 459 01.16% 6 Usability 56 00%

3 Perf. 3444 08.68% 7 Security 5920 14.9%

4 Polish 877 02.21% 8 Stability 109 00%

Figure 1: Large Pie (distribution of 8 bug report types in the
experimental dataset), Small Pie (distribution of regression bugs
across 4 priority types)

We download bug reports from the Google Chromium
Issue Tracking System3 using the feed4 provided by the
Chromium project. We download a total of 295202 issue
reports from Issue ID 2 (8/30/2008 4:00:21 PM) to 388954
(6/26/2014 12:16:25 AM). In addition to ITS data, we also
download the data for all versions of the chromium project
from the Version Control System5, by scrapping the web
page for each revision, right from the start to revision 279885
(6/26/2014 1:27:51 AM). In the ITS data, we observe that
39658 i.e 13.43% of the bug reports have at least one of the
eight bug-type labels (crash, clean-up, performance, polish,
regression, usability, security and stability). These 39658
bugs include both open and closed bugs. Table 1 shows the
percentage distribution of the eight different types of bug
reports. Table 1 reveals that 51.09% of the labeled bug re-
ports are regression bugs (the focus of this paper). Table 1
indicates that the number of labeled Stability and Usability
issue reports are less than 110. This is a clear cut indication
of the regularity of regression bugs. Among the bugs that
are labelled, regression bugs clearly have the majority.

4. CHARACTERIZATION STUDY
In this Section, we present our analysis on the Google

Chromium Issue Tracking System and compare/contrast among
the various different types of bugs and try to understand how
regression bugs differentiate themselves from the other bug

3
https://code.google.com/p/chromium/issues/

4
https://code.google.com/feeds/issues/p/chromium/issues/full/

5
http://src.chromium.org/viewvc/chrome?revision=<revisionID>

&view=revision

Figure 2: Violin plot of number of comments for Crash, Perfor-
mance, Regression and Security bugs

types.

4.1 Bug Priority
Whenever a bug is reported, a developer assigns a priority

to the bug. The priority of the bug is a good reflection of
the importance of fixing the bug. There are 4 priority levels
in Google Chromium project6. An issue can only have one
priority value: 0 is most urgent and 3 is least urgent. Figure
1 shows a pie-of-pie chart which consists of a main pie-chart
and a sub pie-chart. The sub pie-chart separates the re-
gression bug slice from the main pie-chart and displays the
issue report priority distribution as an additional pie-chart.
Figure 1 reveals that 55% of the regression bugs are high
priority (0 [2.8%] and 1 [51.7%]) bugs. Figure 1 is also in-
dicative of the importance of regression bugs. Although, all
types of bugs are unwanted, regression bugs in particular
are a real nightmare for any developer, since it leads to the
undoing of an correctly functioning feature. Hence, unsur-
prisingly regression bugs lie at the top of the priority list of
the developers and bug fixers.

4.2 Number of Comments
Each bug report allows developers to comment on the is-

sue report. The developers post comments on the threaded
discussion forum of the ITS to discuss the bug and the pos-
sible reasons for the bug. The discussions help the devel-
opers to arrive at a solution to the bug. Figure 2 displays
a violin plot (which is a combination of a box plot and a
kernel density plot) of number of comments for four types
of bug reports. We consider only fixed (closed) bug reports

6
http://www.chromium.org/for-testers/bug-reporting-

guidelines/chromium-bug-labels
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Figure 3: Boxplot for the closure time (days) for crash, perfor-
mance, regression and security bugs

as the number of comments for open bug reports may in-
crease after our snapshot of the dataset. The number of
comments posted in response to a bug report serves as a
proxy for popularity, user interest and amount of clarifica-
tion and discussion [16]. The vertical axis of the violin plot
reveals that the number of comments has a range of 0 to 876.
The median values of number of comments for crash, per-
formance, regression and security bugs are 12, 9, 13 and 20
respectively (security bugs have the highest median). The
minimum, Q1, Q3 and maximum value of number of com-
ments for regression bugs are 0, 8, 19 and 876 respectively
(the thick black bar represents the interquartile range). The
violin plot provides a comparison of the distribution of num-
ber of comments for the four type of bug reports. Figure 2
reveals that broadly the shape of the distribution is the same
for the four types of bug reports. The violin is most thicker
(highest probability) at 9, 3, 8 and 18 for the crash, perfor-
mance, regression and security bugs respectively.

4.3 Closure Time Box
Closure Time is the time taken to close an opened issue in

the issue tracking system. Our objective is to understand the
spread of closure time of various types of bug reports and to
get an indication of the data’s symmetry and skewness. Fig-
ure 3 shows four boxplots displaying the five-number data
summary (median, upper and lower quartiles, minimum and
maximum data values) for the closure time of four different
types of bug reports (crash, performance, regression and se-
curity). Table 2 shows the exact values plotted in Figure 3.
While normally the boxplot show outliers, we mention the
maximum value in Table 2 and not in Figure 3 due to wide
variability between the minimum and maximum value. As
shown in Table 2, 50% of the crash and performance bugs
are closed within 12 days and 50% of the regression and secu-
rity bugs are closed within 8 days. The mean is greater than
the median for all four type of bug reports and hence the
distribution is shifted towards the right. Since the distribu-
tion is skewed towards the right (which is apparent from the
visual inspection of the boxplot), most of the values (50%)
are small but there are a few exceptionally large ones. The
few large ones impact the mean and pull it to the right as a
result of which the mean is greater than the median.

Table 2: The Five-Number Data Summary and Mean Value for
the Boxplot in Figure 3

Type Min. Q1 Median Mean Q3 Max.

Crash 0.00 3.00 12.00 44.51 39 1294

Perf. 0.00 2.00 12.00 54.31 52 1685

Regr. 0.00 2.00 8.00 26.84 23 1272

Security 0.00 2.00 8.00 42.84 35 1420

Table 3: The Five-Number Data Summary and Mean Value for
Stars for the Four Types of Bugs

Type Min. Q1 Median Mean Q3 Max.

Crash 0 1 2 2.93 3 224

Perf. 0 1 1 3.112 3 185

Regr. 0 1 2 3.956 4 703

Security 0 1 1 1.335 1 78

4.4 Number of Stars
For any bug report, interested users are allowed to star

an issue. A star is similar to a bookmark. A user who stars
an issue will be informed about the progress made in the
issue. The number of stars on a bug report indicate the
number of people who are interested in that issue. Table 3
shows that the median values of number of stars for crash,
performance, regression and security bugs are 2.93, 3.11,
3.95 and 1.33 respectively. Experimental results reveal that
regression bugs have the highest median.

4.5 Bug Opening and Closing Trends
Francalanci et al. [17] define bug opening and closing

trend as performance indicators reflecting the characteristics
and quality of defect fixing process. They define continuity
and efficiency as performance characteristics of the bug fix-
ing process. We apply the concepts presented by Francalanci
et al. [17] in our research consisting of characterizing regres-
sion bugs and comparing it with other types of bugs. In their
paper, cumulated number of opened and verified bugs over
time is referred to as the bug opening trend. Similarly, clos-
ing trend is defined as the cumulated number of bugs that
are resolved and closed over time.

Figure 4 shows the opening and closing trend for regres-
sion bugs. At any instant of time, the difference between
the two curves (interval) can be computed to identify the
number of bugs which are open at that instant of time. The
debugging process will be of high quality if there is no uncon-
trolled growth of unresolved bugs (the curve for the closing
trend grows nearly as fast or has the same slope as the curve
for the opening trend). We plot all opening and closing trend
graphs on the same scale and hence the differences between
their characteristics are visible. Figure 4 reveals that the de-
bugging and bug fixing process for regression bugs is of high
quality as there is no uncontrolled growth of unresolved bugs
(the curve for the closing trend grows nearly as fast or has
the same slope as the curve for the opening trend) across all
bug types. Figure 5, 6 and 7 shows the opening and closing
trend for security, performance and crash bugs respectively.
We see a noticeable and visible difference between the trends
for performance bug reports in comparison to other types.
As shown in Figure 6, the slope for the performance bugs
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Figure 4: Line and bubble chart showing the regression bug
opening and closing trend

Figure 5: Line and bubble chart showing the security bug
opening and closing trend

Figure 6: Line chart showing the performance bug opening
and closing trend

Figure 7: Line chart showing the crash bug opening and
closing trend

becomes relatively steep after the year 2012 indicating an
increase in the number of performance issues or bugs.

We define a metric which computes the quality of bug
fixing process for one type of bug report in comparison to the
quality of bug fixing process for other types of bug reports.

BSR(T ) =
∆Secr + ∆Perf + ∆Crsh

∆Regr
(1)

BSS(T ) =
∆Regr + ∆Perf + ∆Crsh

∆Secr
(2)

Equation 1 represents the Bubble Size for Regression Bugs
at a Time T [BSR(T )]. ∆Secr at a time T represents the
number of bugs which are open at that instant of time. Sim-
ilarly, ∆Regr, ∆Perf and ∆Crsh at a time T represents the
number of regression, performance and crash bugs which are
open at that instant of time. The numerator in Equation 1
represents the total number security, crash and performance
bugs open at time T . If BSR(T ) is large then it means
that the bug fixing quality of regression bug is much better
than the average bug fixing quality of other types of bugs.

Equation 2 represents the Bubble Size for Security Bugs at
a Time T [BSS(T )]. As shown in Figure 4 and 5, we plot
the BSR and BSS values for four time instants. Figure
4 reveals that the bug fixing quality of regression bugs (in
comparison to the other three types of bugs) was the best
during the second half of the year 2012. Table 4 shows the
exact values for the metrics in Equation 1 and 2.

Table 4: Size of Bubble for Regression Bugs (RBBS) and Security
Bugs (SBBS) in Figure 4 and Figure 5 respectively

Time RBBS SBBS

Mid 2009-10 0.254 1.36

2011 0.79 1.06

Mid 2012-13 1.01 0.61

2014 0.246 2.8

5. PROPOSED APPROACH
In this Section, we describe the entire process of build-

ing our predictive model called Sarathi, (a recommendation
system for predicting top K revision-ids as potential bug
inducing changes for a given regression bug report). The
following 3 subsections explain the following:
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Table 5: Developer Comments from Google Chromium Issue Tracking Discussion Forums indicating Challenges in Identifica-
tion of Regression Bug Introducing Changes

Issue ID Developer Comment

308367 Based on the image the following revisions seem relevant: I don’t see how r228618 could be the culprit

308336 Suspecting r158839? Would you mind taking a look at the above issue & see if this is related. Pardon me,
if that’s not the case.

178769 I suspect your r184639 causing this issue on M25 branch

158542 Nothing login-related seems to have changed between 23.0.1271.56 and 23.0.1271.59: Seems to be related
to revision=164748 (crbug.com/148878)

257984 You are probably looking for a change made after 209908 (known good), but no later than 209952
(first known bad).

270025 I could not reproduce this after reverting my bugfixes 214446 and 209891.

79143 The WebKit revision range is 81970:82392. I guess http://trac.webkit.org/changeset/82376 is the culprit.

88434 It looks like it’s r89641 (that rolled webkit from 89145 to 89228). r89640 is ok and r89645 is bad I’m now
looking at webkit changes between webkit r89145-r89228

1. Ground Truth Data Collection

2. Feature Extraction from the Regression Bug and the
Code Revision that Induced the Bug

3. Predictive Model

Each of these 3 steps are discussed in detail in the follow-
ing subsections.

5.1 Ground Truth Data Collection
Establishing ground truth for our work involves identify-

ing a pair of bug id and a revision id that caused the bug.
Since, there is no official public record of such mapping for
fixed bugs, we mine the bug reports and the developer com-
ments on the issue reports to identify the revision id that
caused the respective issue. We mine only fixed (closed)
bugs for the same. Identification of bug causing revision is a
non-trivial problem. Developers keep trying to identify the
bug causing revision till the time the problem is not fixed. If
a developer suspects an issue or a particular range of issues,
he generally mentions it in the comments so as to narrow
down the range of suspected revisions. This discussion goes
on, till the person who is assigned the bug is able to identify
the issue and fix it.

However, it is not necessary that the bug inducing revision
is always mentioned in a comment. Largely we see that
developer mention a range of suspects or the last known good
revision. Table 5 shows developer comments on some issue
ids. In 5 of the 8 comments, we find that the develop has
mentioned a range or multiple suspect issue ids. In this case
as well, the developers are not sure, and are making educated
guesses, based on the least known working revision. We also
observe that very rarely developers mention the exact bug
inducing revision. Even if they do, some other developer is
quick to refute the claim. Moreover, we find that after fixing
a bug, a majority of the developers, mention the revision in
which the bug is fixed, but they do not mention the revision
in which the bug regressed. Hence, establishing ground truth
for the purpose of our work is very challenging. So, we use a
combination of manual inspection and heuristics to identify
fixed regression bugs where the inducing revision is clearly
mentioned.

We first mine the bug reports and all the comments of
fixed and verified regression bugs. We find that a reference
to a revision id generally follows some fixed patterns. For

e.g.- r12845 , revision 128696, revision=181939, suspecting
- 179554, range=r25689. We extract all revision IDs men-
tioned in the report and comments with the help of these
patterns. We filter the revision IDs, thus, obtained using the
commit timestamp of the revisions mentioned in the VCS.
Any revision id mentioned in a comment, that is committed
after the bug was opened is either a revision where the de-
velopers have tried to fix the bug or have merged it. Hence,
such revisions get filtered out. We consider only those revi-
sions that were committed before the bug was opened. We
further narrow down the dataset and consider only those
bugs whose bug reports and comments mention only one re-
vision that was committed before the bug was opened. We
then manually inspect several bug reports and come up with
two heuristics for identifying revisions that are suspected of
having regressed the bug. First heuristic we used is that if a
revision id is mentioned in the comments and the bug’s sta-
tus is changed to fixed within the next 10 comments then the
revision id mentioned has actually regressed the bug because
the bug was closed soon after its cause was found. Second
heuristic used is overlap between paths of files modified in
bug fixing and bug causing revision because often the source
files in which regression is introduced are the ones being cor-
rected(modified) in the bug fixing revision. Sp if the overlap
value for the issue is high(i.e ≥ 0.4), then the issue id and
its corresponding regression causing revision is added to the
ground truth dataset. Based on these heuristics and manual
inspection, we come up with a dataset of 350 issues and the
corresponding bug inducing revisions.

5.2 Feature Extraction
We divide our dataset of 350 regression bugs and their

corresponding bug inducing change into training dataset and
test dataset (300 training and 50 test). Using the training
data, we identify Temporal and Textual Similarity features
that can be used to identify potential revisions that may
have regressed the bug. Figure 8 is a snapshot of the Google
Chromium Issue Tracking System and the Version Control
System. It points to the location of the data, we find to be
useful when identifying a bug-inducing revision. Next two
subsections discuss each of these features in detail.

5.2.1 Time Difference(N)
The temporal feature identified is the Time Difference(N)

between the date of report of the issue and the commit date
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Figure 8: Snapshot of a Google Chromium Bug Report in Issue Tracking System and a Commit Transaction in Version Control System

Figure 9: Kernal Density Estimate showing the distribution
of the time difference between bug inducing change and re-
gression bug report dataset

Figure 10: Box plot showing difference between the reporting
date of the issue and the commit date of the bug inducing
change

of the bug inducing revision.We first identify the statistical
and density distribution of the temporal feature and check if
it has a Gaussian or normal distribution. Figure 9 shows the
histogram plot dividing the horizontal axis into sub-intervals
or bins covering the range of the data from a minimum of
0 days to a maximum of 100 days. The size of the data
sample for the histogram and density distribution is not the
entire population and consists of dataset with time difference
less than 100 days (93.08%). The solid blue curve is the
kernel density estimate which is a generalization over the
histogram. We use kernel density estimation to estimate the
probability density function of the time difference variable
with the aim of investigating the time difference variable as
a predictor of bug inducing change for a given bug report.

In Figure 9, the data points are represented by small cir-
cles on the x-axis. We observe that the data has a Gaussian
distribution. The smoothing parameter (bandwidth) for the
kernel density estimate in Figure is 4. The mean (µ), vari-
ance (σ2) and standard deviation (σ) for the data is 11.97,
294.17 and 17.17 respectively. We observe that the probabil-
ity distribution is asymmetric and has a positive skewness or

Table 6: The Five-Number Data Summary and Mean Value for
Difference in Days

Min. Q1 Median Mean Q3 Max.

0 2.00 5.00 26.91 16.00 1393.00

right skewed (the right tail is longer and the mean is greater
than the mode). Figure 10 shows a box plot for the differ-
ence in days for 93.33% of total dataset. The plot refers to
the data in Table 6. The mean difference in days is about
26 days with the max difference being 1393 days (almost 4
years). We also observe, that almost 80% of the bugs are
reported within 20 days of the induction of the bug.

5.2.2 Similarity Features
The 4 textual similarity feature identified are :

1. Similarity between Title of a bug report and the Log
Message of the revision.

2. Similarity between the Description of a bug report and
the Log Message of the revision.
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Table 7: Illustrative Examples of Stop Words, Phrases and Sentences Removed During Pre-Processing Stage

S.No Stop words/Phrase/Sentences removed

1 “hard”, “what”, “instead”, “being”, “do”, “you”, “will”, “well”, “reproduce”, “something”, “properly”, “getting”, “basically”

2 “Report ID”,“Cumulative Uptime”,“Other browsers tested”,“Meta information:”,“Thank you”

3 “What steps will reproduce the problem”,“What is the expected output”,“What do you see instead”,“Kindly refer the screencast
for reference”

Figure 11: Box Plot showing the textual similarity
values for 4 features

Figure 12: Scatter Plot showing similarity values of 3
features i.e Cr-Directory,Title-Log, Description-Log

3. Similarity between the Cr and Area labels of the issue
and the top levels of the Changed Paths in the VCS.

4. Similarity between the Title of the issue and the Changed
Paths in the VCS.

We first pre-process the bug report title,description and
log message of bug inducing change and find the textual
similarity using character n-gram based approach between
Title of regression bug report and Log Message of bug in-
ducing revision, Description of bug report and Log Mes-
sage of bug inducing revision and Component and Area
labels of regression bug and paths changed by bug induc-
ing change. Pre-processing includes removal of stop words,
phrases and sentences that are common in almost all bug
reports and log messages and hence are irrelevant and re-
dundant. Table 7 provides list of few such stop words and
phrases removed during pre-processing stage. For finding
textual similarity character n-gram matching is chosen over
whole word matching because of its advantages over the lat-
ter.For example whole word matching will require stemming
to match component “Network” with corresponding direc-
tory ”net”. Also in word based matching will require tok-
enization based on “+” in order to match “shift+Alt” and
“Shift+Alt”+ET KEY RELEASED” Table 8 shows further
more examples clearly indicating advantages of character n-
gram matching over whole word matching. We use the sim-
ilarity function suggested by [10] for computing the textual
similarity or relatedness between a bug report (query repre-
sented as a bag of character n-grams) and a source-code file
(document in a document collection represented as a bag of
character n-gram). Equation 3 is the formula for comput-
ing the similarity between two documents in the proposed
character n-gram based IR model [10].

Let U and V be two vectors of character n-grams. In the
context of our work, U can be a bag of character n-gram de-
rived from the title of the bug report and V can represent a
bag of character n-gram derived from the log message of the

committed revision. U and V can also represent character
n-grams from bug report description and log Message of the
revision respectively or cr and area labels from issue reports
and paths changed in a revision respectively. The numera-
tor of SIM(U, V ) compares every element in U with every
element in V and counts the number of matches. A match is
defined as the case where the two character n-grams are ex-
actly equal. The value of n is added to the total sum in case
of a match. The idea being that the higher the number of
matches, the higher is the similarity score. Also, the formula
ensures longer strings that match contribute more towards
the sum. The denominator of SIM(U, V ) acts as the length
normalizing factor. It removes any bias related to the length
of the title and description in bug reports as well as the for
log messages and changed paths in the commit data. The
final similarity score is computed as a weighted average of
the similarity between title and description of the bug re-
port with the log message and component label of the bug
report with the changed paths of the source-code modifying
revision.

SIM(U, V ) =

∑
uεU

∑
vεV

Match(u, v)× Length(u)

|U | × |V | (3)

Match(u, v) =

{
1 if : u = v
0 Otherwise

(4)

|U | = 2

√
f2
u1

+ f2
u2

+ ..+ f2
un

(5)

SIMSCORE = W1 ∗ SIM(Feature1) + W2 ∗ SIM(Feature2)+

W3 ∗ SIM(Feature3) + W4 ∗ SIM(Feature4)

(6)
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Table 8: Illustrative Examples of Similarity between Component and File Path and Title Description and Log Message showing
Advantages of Character N-Gram Based Approach over Word Based Approach

S.No Issue ID Component/Area Revision ID File Path Fragment

1 8505 Internals-Installer 10921 installer

2 204106 Platform-Apps-MediaPlayer 102183 media,media.gyp

3 263160 Internals-Network-Cache 201943 net,disk cache

S.No Issue ID Title Revision ID Log Message

1 161246 Fullscreen disabled 167006 Constrained Window Cocoa Disable
fullscreen

2 128690 Importing bookmarks fails 112400 TEST=BookmarkModelTest.
AddURLWithWhitespaceTitle

3 213026 Failed to switch the IME with “shift+Alt”
on FindinPage

135791 Shift+Alt+ET KEY RELEASED
accelerator for Ash

4 158995 rebuilds of remotingresources
string resources.grd

165041 Chromoting strings to string resources.grd.

S.No Issue ID Description Revision ID Log Message

1 117018 judging from about:sync, Signed in
state

125111 ProfileSyncService, SigninTracker

2 125323 Go to
chrome://chrome/settings/languages

13413 TEST=browser tests–gtest filter=*.
TestSettingsLanguageOptionsPage

3 1286890 full width space 112400 AddURLWithWhitespaceTitle, extra
whitespace

4 18749 print a label with PayPal/Ebay,visible
page is printed

20876 This also fixes printing issue with print
selection

5 40272 Browser action icons should be displayed
browser action extensions

43044 name for BrowserActionsContainer
Set ExtensionShelf vew visibility

6 80106 page with an auto-filled password 75992 login autofills default password

Figure 11 shows boxplots of similarity results found for
each of the three features. The mean values for Description-
Log,Title-Log Cr-Directory and Title-Directory are 1.4, 0.25,
0.32 and 0.12 respectively. The textual similarity overlap as
indicated by the boxplot is found maximum in bug report
description and log message of regression causing bug.

Figure 12 shows scatter plot for similarity values of 3
features i.e Cr-Directory,Title-Log,Description-Log for each
bug in the training dataset. Scatter plot is more inclined
towards x-z axis which indicates that majority of bugs have
high similarity value for Title-Log and Description-Log with
few outliers having similarity values for each of the three
features.

5.3 Predictive Model
Predictive model comprises of different components. Re-

vision IDs Extractor extracts all revision IDs that were com-
mitted maximum “N” days before the reporting timestamp
of given issue. Textual Feature Extractor component ex-
tracts required features i.e title,description from bug reports
and bug component/area from ITS data and log message,
modified filepaths from VCS Data for each revision.It then
pre-processes these features and extracts bags of character
n-grams from each of these features which are then passed to
Similarity Calculator for computing similarity values. Sim-
ilarity Calculator computes similarity values for all 4 tex-
tual features using equation 3. Rank Generator computes
the overall similarity value for each revision expressed as
a weighted sum of similarities of each feature as given in
Equation 6. W1,W2,W3 and W4 are weights to increase or
decrease importance of one feature as compared to others.

5.4 Experimental Evaluation and Validation

On studying the test data set we find that 78% of bugs are
reported within 20 days after the revision causing the bug
was committed, and 93.3% bugs are reported within 30 days
after the revision causing them was committed. Figure 13
shows different values of N and corresponding number and
percentage of issue which were regressed by revisions com-
mitted at most N days before issue reporting timestamp.So
if value of N is 20 then there are 78% chances that the bug
under consideration is regressed by a revision made at most
20 days before the bug.

Figure 13: Bar Plot showing showing different values of N and
corresponding number and percentage of issue which were re-
gressed by revisions committed at most N days before issue re-
porting timestamp
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Table 9: Table Showing Average Number of Revisions Commit-
ted Maximum ’N’ Days before opening of Issue ID in Test Dataset

S.N0 N Avg. Number of Revisions

1 N=10 1543

2 N=15 2340

3 N=20 3073

4 N=30 4515

Table 10: Table Showing Accuracy in Percentage for Top K
revision IDs

N Top 20 Top 30 Top 50 Top 75 Top 100

10 21 29 31 33 33

15 37 43 49 51 51

20 37 41 54 60 60

30 33 43 47 57 59

Table 9 shows average number of Revisions Committed
Maximum ’N’ Days before opening of Issue ID in Test Dataset.
So on an average if an issue is regressed by revision made
at most 20 days (N=20) before the issue was reported then
the bug fixer will have to go through around 3073 revisions.
Choosing appropriate value of N is of prime importance as
if N is small then we might end up lowering accuracy and
if N is large then it might increase the chances of including
false positives. Table 10 shows accuracy results for different
values of N and K. The system achieves its best accuracy of
60% for N=20 and K=75. The average number of suspected
files that a bug fixer might need to go through for finding
out correct regression causing revision is around 3073 as in-
dicated in table 9. Our system has 60% accuracy, which
means that in 60 out of 100 cases a bug fixer will have to
go through only 75 out of 3073 for finding out regression
inducing change.

6. CONCLUSION
Our experimental results reveal that more than 50% of

the regression bugs are assigned a high priority. Security
bug reports receive maximum number of comments followed
by regression bugs. We observe that 50% of the regression
bugs are closed within 8 days. The median value for the
number of stars for regression bug is 3.95 which is the high-
est in comparison to other types of bugs. There is a notice-
able difference between the bug opening and closing trend
of various types of bugs. Our experiments indicate that the
debugging and bug fixing process for regression bugs is of
high quality. We also observe that the quality of bug fix-
ing process of regression bugs in comparison to other types
of bugs varies over the years and shows the best value for
second half of year 2012.

Our experimental results revealed that degree of textual
similarity between title, description of bug reports and log
message and title,component of issue and paths of modified
files can be used for identifying suspected regression caus-
ing revisions.Character n-gram based four textual features
identified are effective and have several advantages over word
based features. Also we find that feature of time difference
between the opening of the bug report and the commit that
caused the bug, is less than 20(N=20) days for about 78%
of the bugs. We find accuracy results for different N val-

ues. N=20 turns out to give best accuracy results with less
false positives than N=30 and better accuracy results as
compared to N=10,15. We find that our recommendation
engine Sarathi, returns the correct bug inducing revision in
the top 50 list in 54% of the cases and around 60% in top
75 list.
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