Jeff Stacey
j...@altair.com
PS - tables/graphs are not what I would like
In Article<31F8B1...@altair.com>, <j...@altair.com> write:
The s-domain transfer function for C-weighting is :-
Hc(s)= 4*pi^2*12200^2*s^2
_______________________________
(s+2*pi*20.6)^2(s+2*pi*12200)^2
Adding an extra real-axis pole to the C-weighting transfer function
gives us B-weighting :-
Hb(s)= 4*pi^2*12200^2*s^3
_____________________________________________
(s+2*pi*20.6)^2(s+2*pi*12200)^2(s+2*pi*158.5)
Adding two real-axis poles to the C-weighting transfer function gives
us A-weighting :-
Ha(s)= 4*pi^2*12200^2*s^4
______________________________________________________________
(s+2*pi*20.6)^2(s+2*pi*12200)^2(s+2*pi*107.7)(s+2*pi*737.9)
where pi=3.14159...etc and s is the complex variable.
If you are only interested in the steady-state response then the
weightings may be expressed in terms of frequency alone :-
Rc(f)= 12200^2*f^2
_________________________
(f^2+20.6^2)(f^2+12200^2)
Rb(f)= 12200^3*f^3
____________________________________________
(f^2+20.6^2)(f^2+12200^2)((f^2+158.5^2)^0.5)
Ra(f)= 12200^4*f^4
_____________________________________________________________
(f^2+20.6^2)(f^2+12200^2)((f^2+107.7^2)^0.5)((f^2+737.9^2)^0.5)
These filters show a loss at 1kHz of 2.0dB ,0.17dB , 0.06dB for A , B
and C weightings respectively and , since it is usual to normalise the
response of each filter to 1kHz , this loss must be added to the to the
modulus . In other words the responses may be expressed (in dB's) as follows
:-
C= 0.06 + 20*log(Rc(f))
B= 0.17 + 20*log(Rb(f))
A= 2.0 + 20*log(Ra(f))
I don't have the transfer function fo D-weighting easily to hand , but
I can tell you the position of the poles and zeroes (from IEC 537)
Poles Zeroes
-282.7 + j0 -519.8 + j876.2
-1160 + j0 -519.8 - j876.2
-1712 + j2628 0 + j0
-1712 - j2628
Regards ,
Neil R. K. Glenister