ããšãã°ã2çš®é¡ã®ããŒã¿ã3å䞊ã¹ãå Žå
000
001
010
011
100
101
110
111
ã®8éããããããã®äžã§ããŒã¿çš®é¡æ°ã1ã®ãã®ã2ã€ã2ã®ãã®ã6ã€ãããŸãã
ããªãã¡ã(1*2+2*6)/8=14/8 ãšãªããŸãã
ãã®å ŽåããèãããšããŒã¿çš®é¡æ°ãtã®ãã®ã®åæ°m_tã¯
m_t={(t^k)*_N C_t}-{((t-1)^k)*_N C_(t-1)}
ãšèããããŸãã
N=2 k=3ãªãã°
m_1={(1^3)*2C1}-0=1*2=2
m_2={(2^3)*2C2}-{(1^3)*2C1}=8*1-1*2=6
ãšãªããåèšã®ãã®ãšäžèŽããŸãã
ããã¯ãããŒã¿tçš®é¡ãkåé©åœã«äžŠã¹ãæ¹æ³ãt^kã§ããã
ãã®tçš®é¡ãNåã®äžããéžã¶æ¹æ³ã_N C_tã§ãããšããããã
ããŠããŸãã(t-1ã®åãåŒããŠãã®ã¯t-1çš®é¡ããéžãã§ããªããã®ãæé€ãããã)
Σt*m_t / N^k
ãçš®é¡æ°ã®å¹³åãšãªãã¯ãã§ãã
ããŠãk=36 N=32ã§ãã£ãŠã¿ãŸããããããšt=19ãããã§ã
æ¬æ¥ã®å
šæ°ããªãã¡N^kãè¶
ããŸãã
ãšãããšãäžã®ä»®å®ã¯ééããŠããããšã«ãªããŸãã
ã©ããã£ãŠèããã°ããã®ã§ããããã
--
Yoshitaka Ikeda mailto:ik...@4bn.ne.jp
In article <bv55l2$3lg$1...@caraway.media.kyoto-u.ac.jp>
Yoshitaka Ikeda <ik...@4bn.ne.jp> writes:
> ãã®å ŽåããèãããšããŒã¿çš®é¡æ°ãtã®ãã®ã®åæ°m_tã¯
> m_t={(t^k)*_N C_t}-{((t-1)^k)*_N C_(t-1)}
> ãšèããããŸãã
ãããééã£ãŠããããšã¯çŽãã«åãããŸã. N = t = 3 ãšãããš,
0, 1, 2 ã® 3 æåãããªã k åã®æååã®åæ°ã¯ 3^k,
ãã®ãã¡ 0, 1 ã® 2 æåã ããããªãæååã 2^k,
ãã®ãã¡ 0, 2 ã® 2 æåã ããããªãæååã 2^k,
ãã®ãã¡ 1, 2 ã® 2 æåã ããããªãæååã 2^k, ã ã,
3^k - 3 * 2^k ãšãããš,
0 ã® 1 æåã ããããªãæåå 1,
1 ã® 1 æåã ããããªãæåå 1,
2 ã® 1 æåã ããããªãæåå 1,
ãããããäºååŒããŠããããšã«ãªãã®ã§, æ£ããã¯
3^k - 3 * 2^k + 3
ãšãªãç.
# k = 1, 2, ... , t - 1 ã§ã¯ 0 ã«ãªãçã§ããã.
> ããŠãk=36 N=32ã§ãã£ãŠã¿ãŸããããããšt=19ãããã§ã
> æ¬æ¥ã®å
šæ°ããªãã¡N^kãè¶
ããŸãã
ããã¯è¯ãåãããªã. äœã N^k ãè¶
ããŠããã®ã§ãã.
--
å¡æ¬åç§@å¿çšæ°åŠ.é«åååŠç§.ç¹ç¶åŠéš.京éœå·¥èžç¹ç¶å€§åŠ
Tsukamoto, C. : chi...@ipc.kit.ac.jp
Yoshitaka Ikeda wrote:
> Nçš®é¡ã®ããŒã¿ãkåïŒéè€ãèš±ããŠïŒäžŠã¹ãå Žåã®ããŒã¿ã®çš®é¡æ°ã®
> å¹³åãæ±ããããšèããŠããŸãã
...
> ãã®å ŽåããèãããšããŒã¿çš®é¡æ°ãtã®ãã®ã®åæ°m_tã¯
> m_t={(t^k)*_N C_t}-{((t-1)^k)*_N C_(t-1)}
> ãšèããããŸãã
ãŸã t>k ãªã m_t 㯠0 ã«ãªããªããã°ãªããªããã©ã
äžã®åŒã§ã¯ãããçŸããŠããŸããããã
# 以äžïŒé ä¿æ° _N C_t 㯠C(N, t) ã®ããã«æžããŸãã
> ããã¯ãããŒã¿tçš®é¡ãkåé©åœã«äžŠã¹ãæ¹æ³ãt^kã§ããã
> ãã®tçš®é¡ãNåã®äžããéžã¶æ¹æ³ã_N C_tã§ãããšããããã
> ããŠããŸãã
ããããã§ã«ééã£ãŠããããšã¯ N=3 ãããã
èŠãŠãããããŸãããïŒããããããã§ãã¯ããããïŒ
ããã ãšïŒè²ä»¥äžã§ïŒå䞊ã¹ãæ¹æ³ã¯ïŒ
ã2^2 * C(3, 2) = 12 éã
ããããšã«ãªããã©ãå®éã«ã¯ 3^2 = 9 éããããªãã
åããã®ãéè€ããŠæ°ããŠããããã§ãã
å
·äœçã«ã¯ãäžã®ããã« aa, bb, cc ãïŒåºŠæ°ããããŠããïŒ
ãaa ab ba bb
ãbb bc cb cc
ãcc ca ac aa
ããã㯠N=3, k=3 ã ãšãm_3 㯠3! = 6 ã§ãªããã°ãªããªãã®ã«ã
äžã®åŒã ãš 3 ã«ãªã£ãŠããŸããä»åºŠã¯éè€åã®åŒãããã§ããã
=====
ããããªåœ¢ã§è¡šãããã¯ãŸã ããããªããã ãã©ãåæã§ãããªãã
ãšãããã挞ååŒã¯äœããã
M(t) ããã¡ããã© t çš®é¡ã®ããŒã¿ã䜿ã£ãŠäœããé·ã k ã®
ããŒã¿åã®åæ°ãšããŸãïŒk ã¯æèã§æ±ºãŸãïŒã
ãããšæ± ç°ããã® m_t ã¯ïŒ
ãm_t = C(N, t)*M(t)
ã«ãªããŸãã
ãã㧠M(t) ã¯ãt çš®é¡ïŒä»¥å
ïŒã®ããŒã¿ã§äœããç·æ° t^k ãã
t çš®é¡æªæºã®ããŒã¿ãã䜿ã£ãŠããªããã®ãåŒãã°ããããïŒ
ãM(t) = t^k - C(t, 1)M(t-1) - C(t,2)M(t-2) - ... - C(t,t-1)M(1)
ãããã= t^k - Σ_{i=1...t-1} C(t,i)M(t-i)
ãM(1) = 1
ãããå±éã»æŽçããã°ããããã¯å
šé¢çã«èãçŽãã°ãã£ãš
ç°¡åã«ãªããããããªããã©ããšãããã匷åŒã«ããã°ã©ã ããŠ
ã¿ãéãã§ã¯å€§äžå€«ããã§ãã
ïŒå¹³è³ïŒ ç波倧ïŒ
ãªãããããŸããŸãšããããããªãšæã£ãŠãŸãšãã¡ãã£ããã§ãã
ãŸãšããåã®åŒãééã£ãŠããã®ã§ããã
># 以äžïŒé
ä¿æ° _N C_t 㯠C(N, t) ã®ããã«æžããŸãã
>
>> ããã¯ãããŒã¿tçš®é¡ãkåé©åœã«äžŠã¹ãæ¹æ³ãt^kã§ããã
>> ãã®tçš®é¡ãNåã®äžããéžã¶æ¹æ³ã_N C_tã§ãããšããããã
>> ããŠããŸãã
>
>ããããã§ã«ééã£ãŠããããšã¯ N=3 ãããã
>èŠãŠãããããŸãããïŒããããããã§ãã¯ããããïŒ
>
>ããã ãšïŒè²ä»¥äžã§ïŒå䞊ã¹ãæ¹æ³ã¯ïŒ
>ã2^2 * C(3, 2) = 12 éã
>ããããšã«ãªããã©ãå®éã«ã¯ 3^2 = 9 éããããªãã
>åããã®ãéè€ããŠæ°ããŠããããã§ãã
>å
·äœçã«ã¯ãäžã®ããã« aa, bb, cc ãïŒåºŠæ°ããããŠããïŒ
>ãaa ab ba bb
>ãbb bc cb cc
>ãcc ca ac aa
ããã§ããã1çš®é¡ãã䜿ã£ãŠããªããã®ãã3^1ãšãããšæ°ããŠããŸã£ãã®ã§
ãããããã¯C(3,2)*(C2,1)=6ãšæ°ããã¹ãã ã£ãã®ã§ããã
>ããã㯠N=3, k=3 ã ãšãm_3 㯠3! = 6 ã§ãªããã°ãªããªãã®ã«ã
>äžã®åŒã ãš 3 ã«ãªã£ãŠããŸããä»åºŠã¯éè€åã®åŒãããã§ããã
>
>=====
>ããããªåœ¢ã§è¡šãããã¯ãŸã ããããªããã ãã©ãåæã§ãããªãã
>ãšãããã挞ååŒã¯äœããã
>
>M(t) ããã¡ããã© t çš®é¡ã®ããŒã¿ã䜿ã£ãŠäœããé·ã k ã®
>ããŒã¿åã®åæ°ãšããŸãïŒk ã¯æèã§æ±ºãŸãïŒã
>ãããšæ± ç°ããã® m_t ã¯ïŒ
>ãm_t = C(N, t)*M(t)
>ã«ãªããŸãã
>ãã㧠M(t) ã¯ãt çš®é¡ïŒä»¥å
ïŒã®ããŒã¿ã§äœããç·æ° t^k ãã
>t çš®é¡æªæºã®ããŒã¿ãã䜿ã£ãŠããªããã®ãåŒãã°ããããïŒ
>ãM(t) = t^k - C(t, 1)M(t-1) - C(t,2)M(t-2) - ... - C(t,t-1)M(1)
>ãããã= t^k - Σ_{i=1...t-1} C(t,i)M(t-i)
>ãM(1) = 1
>
>ãããå±éã»æŽçããã°ããããã¯å
šé¢çã«èãçŽãã°ãã£ãš
>ç°¡åã«ãªããããããªããã©ããšãããã匷åŒã«ããã°ã©ã ããŠ
>ã¿ãéãã§ã¯å€§äžå€«ããã§ãã
ãšãããããäœãããããªåŒãåºãããšããç®çã§ã¯ãªãã確çèšç®ããã
ãã£ãã®ã§ããã®ãšããã«ããã°ã©ã ãäœã£ãŠã¿ããšããã倧ããªå€ã§ãã»ãŒ
äºæ³éãã®ççŸã®ãªãçµæãã§ãŸããã
#ã¡ãªã¿ã«ãã»ããã£ãã®ã¯ãN=32,k=36ã ã£ãã®ã§ããã
In article <04012718431...@ims.ipc.kit.ac.jp>
Tsukamoto Chiaki <chi...@ipc.kit.ac.jp> writes:
> 3^k - 3 * 2^k + 3
> ãšãªãç.
æ£ãã㯠3^k - 3 * 2^k + 3 * 1^k - 0^k ã§ãã.
# æ¬è³ªçã«ã¯ Stirling numbers of the second kind.
ããã§ã®M(t)ã¯kã«ãäŸåããŸãããM(t,k)ãšæžããŠ
ããã¡ãã£ãšç°¡åã«ããŠã¿ãŸãã
C(t,i)=C(t,t-i)ã®æ§è³ªãšt-iâiã®å€æ°å€æãè¡ãã°
M(t,k) = t^k - Σ_{i=1...t-1} C(t,i)M(i,k)
åã巊蟺ãžç§»è¡ããŠC(t,t)=1ãšM(i,0)=0ã䜿ã£ãŠ
Σ_{i=0...t} C(t,i)M(i,k) = t^k
ãšçµæ§ãããã«ãŸãšãŸããŸããããã«äœããã®å転å
Œ΋
äœãã䜿ããã°M(i,k)ã«ã€ããŠè§£ããããªãã§ãã
ç§ã¯ãã以äžããããŸããã
ãåç¥ã®æ¹ããã©ããŒãé¡ãããŸãã
> Σ_{i=0...t} C(t,i)M(i,k) = t^k
>
> ãšçµæ§ãããã«ãŸãšãŸããŸããããã«äœããã®å転å
Œ΋
> äœãã䜿ããã°M(i,k)ã«ã€ããŠè§£ããããªãã§ãã
> ç§ã¯ãã以äžããããŸããã
åè»¢å ¬åŒãäœããªãããšæ¢ããããããŸããã
åèæç®ïŒãå±±æ¬å¹žäžèãé åã»çµåããšç¢ºçã岩波æžåºp.91-92
ããã«ãããšã
A(n) = Σ_{k=0...n} C(n,k) a(k)
ã®ãšãa(n)ã¯
a(n) = Σ_{k=0...n} (-1)^k C(n,k) A(n-k)
ãšè¡šãããããã§ããããã䜿ãã°M(n,m)ã¯æ¬¡ã®ããã«ãªããŸãã
M(n,m) = Σ_{k=0...n} (-1)^k C(n,k) (n-k)^m
ãšãªããŸããäŸãã°ãM(3,k)ãªãå¡æ¬ããã®çµæãã§ãŸãã
æ± ç°ããã®æçš¿ã«ããN=32,k=36ã®å Žåã¯
M(32,36) = 32^36 - C(32,1) * 31^36 + C(32,2) * 30^36 - ã»ã»ã» - C(32,31) * 1^36 + 0^36
ãããããã= 1079603166268837867793599865083888926720000000
ãšèšç®ãããŸãã
ïŒãMathmaticaã䜿ã£ãŠèšç®ããŸããã
In article <bv8o05$llh$1...@news511.nifty.com>
"GON" <g...@mocha.freemail.ne.jp> writes:
> M(n,m) = Σ_{k=0...n} (-1)^k C(n,k) (n-k)^m
>
> ãšãªããŸãã
ããã¯ãå é€åçãã§åºãåŒã§ãã. å ã¿ã«,
In article <bv8ijf$cfu$1...@news511.nifty.com>
"GON" <g...@mocha.freemail.ne.jp> writes:
% Σ_{i=0...t} C(t,i)M(i,k) = t^k
%
% ãšçµæ§ãããã«ãŸãšãŸããŸãã
ãã㯠Σ(t!/(t-i)!)(M(i,k)/i!) = t^k ãšæžãçŽããš, Stirling numbers
of the second kind (M(i,k)/i!) ã䜿ã£ãŠ, ããä¹ãäžéããä¹ã§è¡šãåŒ
ã§ã. äŸãã°
t^4 = t(t-1)(t-2)(t-3) + 6t(t-1)(t-2) + 7t(t-1) + t.
GON wrote:
> å転å
¬åŒãäœããªãããšæ¢ããããããŸããã
ããã...
>ããã䜿ãã°M(n,m)ã¯æ¬¡ã®ããã«ãªããŸãã
>
> M(n,m) = Σ_{k=0...n} (-1)^k C(n,k) (n-k)^m
>
> ãšãªããŸããäŸãã°ãM(3,k)ãªãå¡æ¬ããã®çµæãã§ãŸãã
æ¬äººããã®ã³ã¡ã³ãããããŸãããå¡æ¬ããã¯äžã®äžè¬åŒ
ïŒãããã¯ãããšåçã®ãã®ïŒãæ¿ç¥ããŠããã§ããããã
# ãããçŽã«æžããªãã®ãå¡æ¬ãããããã
å
ã®æ± ç°ããã®åé¡ããèšãã°ãäžã¯ n>m ã®å Žåã«ã¯
䜿ããªãã®ã§ãããããã¯åçŽã«ïŒ
ãn>m ã®ãšã㯠M(n,m) = C(n,m) * M(m,m)
ã§ããã§ããã
ïŒå¹³è³ïŒ ç波倧ïŒ
Yuzuru Hiraga wrote:
> å
ã®æ± ç°ããã®åé¡ããèšãã°ãäžã¯ n>m ã®å Žåã«ã¯
> 䜿ããªãã®ã§ãããããã¯åçŽã«ïŒ
> ãn>m ã®ãšã㯠M(n,m) = C(n,m) * M(m,m)
> ã§ããã§ããã
ãã¿ãŸãããã©ãããåéããããŠãŸããã
ããã¯å
ã®åŒéã 0 ã§ããã§ããã
# å¥ã®åé¡ãèããŠãããã®ã§ã
> ïŒå¹³è³ïŒ ç波倧ïŒ
>
ãªãã»ã©ããå é€åçãã£ãŠèšããã§ãããå匷ã«ãªããŸããïœïŒ_ _ïŒïœ
> In article <bv8ijf$cfu$1...@news511.nifty.com>
> "GON" <g...@mocha.freemail.ne.jp> writes:
> % Σ_{i=0...t} C(t,i)M(i,k) = t^k
> %
> % ãšçµæ§ãããã«ãŸãšãŸããŸãã
>
> ãã㯠Σ(t!/(t-i)!)(M(i,k)/i!) = t^k ãšæžãçŽããš, Stirling numbers
> of the second kind (M(i,k)/i!) ã䜿ã£ãŠ, ããä¹ãäžéããä¹ã§è¡šãåŒ
> ã§ã. äŸãã°
>
> t^4 = t(t-1)(t-2)(t-3) + 6t(t-1)(t-2) + 7t(t-1) + t.
ã¹ã¿ãŒãªã³ã°æ°ã£ãŠã®ã¯çµåãè«ã«ããåºãŠããããã§ããã
ååŠã®ããããã¡ãã£ãšããããžããå匷ããŠã¿ãŸãã
ç§ã®äžä»£ãªãåäŸã®ããããéçã«ãŒããšãã¬ãã£ã¬ãã£ãšãæµè¡ã£ãŠãŸãããã©
ä»ã ãšäœãããã®ããªãïŒããã¯ãªãã³ãã§ã³ã®ããŸããšãïŒïŒå€ãïŒïœïŒ
äŸãã°ããèåäŒç€ŸãïŒïŒçš®é¡ã®ããŸãã«ãŒããä»é²ã«ã€ããŠå£²ã£ãŠãããšããŸãã
ãã®ãèåãè²·ãåäŸã¯åžå Žèª¿æ»ã«ãã£ãŠïŒäººãããïŒã¶æïŒïŒåïŒïŒæ¥ã«ïŒåïŒ
è²·ã£ãŠãããšããŸãã
ããã§ããã®åãïŒïŒçš®é¡ã®ã«ãŒãããã¹ãŠéãããŸã§ã«ã©ã®ãããæéãæããã
å
ã«æçš¿ããã°ã©ããåèã«æŠç®ãåºããŠã¿ãŸããïŒïŒïŒã®ã°ã©ããèŠããšïŒïŒïŒå
çšåºŠã§ã»ãŒïŒïŒçš®é¡è¿ãã«éããããã§ãããããš
ïŒïŒïŒïŒåïŒÃ·ïŒïŒïŒå/æïŒâïŒïŒã¶æïŒïŒå¹ŽïŒã¶æ
ãšæŠç®ãåºãŸããåŸã£ãŠããã®ãèåã®ããŸãã¯æ倧ã§ãïŒå¹ŽçšåºŠã§æ°ãããã®ã«
ããªããšé£œããããŠããŸãèšç®ã«ãªããŸãã
ãšãããå®éã¯ãåéå士ã§ã«ãŒãã®äº€æãããããŠããããæ©ããã¹ãŠã®ã«ãŒãã
éããŠããŸãã§ããããããããããæ©ã補åå
¥ãæ¿ããããªããšãã¡ã§ããããã
ãã ãåéå士ã®äº€æãã»ãšãã©ããããªããããªå Žåãªããã®èšç®ã§ã»ãŒæŠç®ã
åºããã§ãããã
補åã®è£œé èšç»ãªããã«äœ¿ããããªå®çšçãªæ°åŠã§ããã
ã§ã¯ã
ãããæžãã®ãç§ããããïŒç¬ïŒ
å¡æ¬ããã¯æ°åŠè
ã§ããããããã£ãããšã¯ååæ¿ç¥ããŠããŠãããã
æžããªãã®ã§ãããããç§ã¯æ°åŠè
ãããããŸãããããããã£ãå
Œ΋
ããããšããç¥ããŸãããåçŽã«é ã®äœæãšããŠããèŠãŠãŸããã
ç§ã®å Žåã¯ããèªäœããããã®å¿çšãèããã»ãã«èå³ããããŸãã
å€åãæ± ç°ããã¯äœããã®åé¡ã®åã«é¢ä¿ããä»äºããã£ãŠãããã
çããåé¡ãæ°åŠçãªåé¡ãšããŠçŒããªãããŠèããŠããã§ããããã
ãããç§ã¯ãã®åæ©ã®ã»ãã«é¢å¿ããããŸãã
çŽç²ã«æ°åŠçãªåé¡ãšããŠã¯é¢çœããªãã®ãããããŸãããããã®çµæ
ã©ããªå¿çšãããããã®ããèããã®ã¯çµæ§æ¥œããã§ãã
ïŒãç©çåºèº«ã ãããããããŸãããã»ã»ã»
In article <bvags7$h5d$1...@news511.nifty.com>
"GON" <g...@mocha.freemail.ne.jp> writes:
> ãªãã»ã©ããå
é€åçãã£ãŠèšããã§ãããå匷ã«ãªããŸããïœïŒ_ _ïŒïœ
ã¡ãããšæžããŠãããŸãããã.
ç·æ° N åã®ãã®ã®å
, äŸãã° a, b, c, d å
šãŠã®æ¡ä»¶ãæºãããã®ã ãã®
åæ° M ãæ±ããããšããŸã. æ¡ä»¶ a ãæºãã *ãªã* ãã®ã®åæ°ã N(a),
æ¡ä»¶ a ã æ¡ä»¶ b ãæºãããªããã®ã®åæ°ã N(ab), etc., ãšæžãããšã«
ãããš,
M = N - N(a) - N(b) - N(c) - N(d)
+ N(ab) + N(ac) + N(ad) + N(bc) + N(bd) + N(cd)
- N(abc) - N(abd) - N(acd) - N(bcd)
+ N(abcd)
ãšãªã, ãšããã®ããå
é€åçãã§ã. N(ab) = N(ac) = ⊠= N(cd) ãš
ãªã£ãŠãããããã®ãªã, çµã¿åããã®æ°ã§ãŸãšããããŸã.
# äžè¬ã§ã®èšè¿°ãšãã®èšŒæã¯çç¥.
"GON" <g...@mocha.freemail.ne.jp> wrote in
message <bvah28$hef$1...@news511.nifty.com>:
> ããã§ããã®åãïŒïŒçš®é¡ã®ã«ãŒãããã¹ãŠéãããŸã§ã«ã©ã®ãããæéãæããã
> å
ã«æçš¿ããã°ã©ããåèã«æŠç®ãåºããŠã¿ãŸããïŒïŒïŒã®ã°ã©ããèŠããšïŒïŒïŒå
> çšåºŠã§ã»ãŒïŒïŒçš®é¡è¿ãã«éããããã§ãããããš
50 çš®é¡ãéããã®ã«æããåæ°ã¯ 225 åã§ã¯ãªãã§ãã?
ãµã€ã³ãã ãš 15 åã
ãn/n + n/(n-1) + n/(n-2) + ⊠n/1
ãµã€ã³ãã§èãããšâŠ
ãâ1 çªç®ã®ç®
ããã©ããåºãŠãã€ã€ãã確ç 6/6ãåºããŸã§ã«æããåæ°ã¯ãã®
ããéæ°ã® 6/6 åã
ãâ2 çªç®ã®ç®
ããæåã«åºã 1 ã€ãé¿ãããã確ç 5/6ãåºããŸã§ã®åæ°ã¯éæ°
ããã® 6/5 åã
ãïœ(snip)ïœ
ãâ6 çªç®ã®ç®
ããæ¢åºã® 5 ã€ãé¿ãããã確ç 1/6ãåºããŸã§ã®åæ°ã¯éæ°ã®
ãã6/1 åã
âŠãšãããåã
ã®çæ³ã®è©Šè¡åæ°ã足ãåãããŠâŠ
ã6/6 + 6/5 + 6/4 + 6/3 + 6/2 + 6/1
ãã= 147/10
ãã= 14.7ãåãäžã㊠15 å
âŠãšãªããŸããã³ã³ãã¥ãŒã¿ã§ä¹±æ°ãå»»ããŠæ€èšŒããŸããã
ã Tabby as ãããã
ã ta...@yk.rim.or.jp
ã http://www.yk.rim.or.jp/âŸtabby/
ã©ãããããã°ã©ãã³ã°ãã¹ããã£ãããã§ãã
ã¡ãã£ãšèª¿ã¹ãŠã¿ãŸãã
ã§ã¯ã
"GON" <g...@mocha.freemail.ne.jp> wrote in message news:bv92pt$5to$1...@news511.nifty.com...
> "GON" <g...@mocha.freemail.ne.jp> wrote in message news:bv8o05$llh$1...@news511.nifty.com...
>
> > M(n,m) = Σ_{k=0...n} (-1)^k C(n,k) (n-k)^m
>
> ã䜿ã£ãŠæ± ç°ãããæ±ãããã£ãéè€é åäžã®çš®æ°ã®å¹³åãã©ããªãã®ã
> ã°ã©ãã§èŠãŠã¿ãŸãã
>
> Nçš®é¡ã®ããŒã¿ãkåïŒéè€ãèš±ããŠïŒäžŠã¹ãå Žåã®ããŒã¿ã®å¹³åçš®é¡æ°H(N,k)ã¯
>
> H(N,k) = Σ_{n=0...N} n*M(n,k)/N^k
ããã§C(N,n)ãæããã®ãå¿ããŠãŸããã
æ£ããã¯ã
H(N,k) = Σ_{n=0...N} n*C(N,n)*M(n,k)/N^k
ã§ããåŸã£ãŠã
H(N,k) = {C(N,1)*M(1,k) + 2*C(N,2)*M(2,k) + 3*C(N,3)*M(3,k) + ã»ã»ã» + N*C(N,N)*M(N,k)}/N^k
ã«ãªããŸãã
"GON" <g...@mocha.freemail.ne.jp> wrote in message news:bvah28$hef$1...@news511.nifty.com...
> ããã§ããã®åãïŒïŒçš®é¡ã®ã«ãŒãããã¹ãŠéãããŸã§ã«ã©ã®ãããæéãæããã
> å
ã«æçš¿ããã°ã©ããåèã«æŠç®ãåºããŠã¿ãŸããïŒïŒïŒã®ã°ã©ããèŠããšïŒïŒïŒå
> çšåºŠã§ã»ãŒïŒïŒçš®é¡è¿ãã«éããããã§ãããããš
>
> ïŒïŒïŒïŒåïŒÃ·ïŒïŒïŒå/æïŒâïŒïŒã¶æïŒïŒå¹ŽïŒã¶æ
>
> ãšæŠç®ãåºãŸããåŸã£ãŠããã®ãèåã®ããŸãã¯æ倧ã§ãïŒå¹ŽçšåºŠã§æ°ãããã®ã«
> ããªããšé£œããããŠããŸãèšç®ã«ãªããŸãã
ããã¯ãããããããææã®ããã«ïŒïŒïŒåã«ãªããŸããã
ïŒïŒïŒïŒåïŒÃ·ïŒïŒïŒå/æïŒâïŒïŒã¶æïŒïŒå¹ŽïŒã¶æ
ã«ãªããŸãããããåéå士ã®äº€æããªããã°ïŒå¹ŽçšåºŠã§æ°ããã·ãªãŒãºãåºããªããš
飜ããããŠããŸããŸãã
ããŒã£ãšããããããšèãããèããŠããã ãããããããã§ããã
ã¡ãã£ãšäŒŒããããªè©±ãæšæ¥ãæã·ã³ããžãŠã ã§èãã¡ãã£ãã®ã§
æžããŸããã
ãããããã¯æå·ã¢ã«ãŽãªãºã ããã£ãŠãããã¯ããŒãã«ãåŒãéšåããã£ã±
ãç¹°ãè¿ãããã§ããããŒãã«ã®ã€ã³ããã¯ã¹ã¯ããçšåºŠéãããŠããããšã
ã§ãèªåãå¶åŸ¡ã§ããªããšããã¯ã©ã³ãã ãªéçšãéããšä»®å®ããŸãã
èªåãå¶åŸ¡ã§ããéšåãããŸãäžèŽãããããšãã§ããå ŽåãšãäžèŽãããªã
å Žåãšã§ãã¢ã«ãŽãªãºã å
šäœã§åŒãããããŒãã«ã®ããŠããŒã¯ãªæ°ããã©ãã
ããå€ãããããšããã®ãç¥ãããã£ãããã§ãã
ãããæ€ç¥å¯èœã§ããã°ãèªåãå¶åŸ¡ããéšåãäžèŽããŠããäžèŽããŠããªã
ãã決å®ã§ããããã§ãã
ãšãããããªå¿çšãèããåé¡ã ã£ãã®ã§ããã
In article <bvavbu$2mqd$1...@news2.rim.or.jp>
KUROSAWA Takashi <ta...@yk.rim.or.jp> writes:
> 50 çš®é¡ãéããã®ã«æããåæ°ã¯ 225 åã§ã¯ãªãã§ãã?
> ãµã€ã³ãã ãš 15 åã
> ãn/n + n/(n-1) + n/(n-2) + ⊠n/1
>
> ãµã€ã³ãã§èãããšâŠ
> ãâ1 çªç®ã®ç®
> ããã©ããåºãŠãã€ã€ãã確ç 6/6ãåºããŸã§ã«æããåæ°ã¯ãã®
> ããéæ°ã® 6/6 åã
> ãâ2 çªç®ã®ç®
> ããæåã«åºã 1 ã€ãé¿ãããã確ç 5/6ãåºããŸã§ã®åæ°ã¯éæ°
> ããã® 6/5 åã
> ãïœ(snip)ïœ
> ãâ6 çªç®ã®ç®
> ããæ¢åºã® 5 ã€ãé¿ãããã確ç 1/6ãåºããŸã§ã®åæ°ã¯éæ°ã®
> ãã6/1 åã
> âŠãšãããåã
ã®çæ³ã®è©Šè¡åæ°ã足ãåãããŠâŠ
> ã6/6 + 6/5 + 6/4 + 6/3 + 6/2 + 6/1
> ãã= 147/10
> ãã= 14.7ãåãäžã㊠15 å
> âŠãšãªããŸããã³ã³ãã¥ãŒã¿ã§ä¹±æ°ãå»»ããŠæ€èšŒããŸããã
è¯ãèãæ¹ã ãšæããŸã.
k çš®é¡ã®æåã random ã«åºçŸãããšã, n åç®ã«ã¡ããã© k çš®é¡åºæã
ãšããã®ã¯, n-1 åãŸã§ã k-1 çš®é¡ã®æåãã¡ããã©çŸãããããªåã«
ãªã£ãŠããŠ, n åç®ã«æ®ãã®æåãåºããšããå Žåã§ããã, ãã®ç¢ºçã¯
(Σ_{i=0}^{k-1} (-1)^i C(k-1, i) (k-1-i)^{n-1})/k^{n-1}
ãã®åæ°ã®æåŸ å€ E ã¯
E = Σ_{n=k}^â n (Σ_{i=0}^{k-1} (-1)^i C(k-1, i) (k-1-i)^{n-1})/k^{n-1}
= Σ_{i=0}^{k-1} (-1)^i C(k-1, i) Σ_{n=k}^â n ((k-1-i)/k)^{n-1}.
ãã㧠S(X) = Σ_{n=k}^â n X^{n-1} ãšãããš,
S(X) = (d/dX) Σ_{n=k}^â X^n
= (d/dX) (X^k/(1-X))
= k X^{k-1}/(1-X) + X^k/(1-X)^2.
ãã£ãŠ, 1 - (k-1-i)/k = (i+1)/k, C(k-1, i)*(k/(i+1)) = C(k, i+1) ãã,
E = Σ_{i=0}^{k-1} (-1)^i C(k-1, i)
(k^2/(i+1) + k(k-1-i)/(i+1)^2)
((k-1-i)/k)^{k-1}.
= Σ_{i=0}^{k-1} (-1)^i C(k, i+1) (k + k/(i+1) - 1) ((k-1-i)/k)^{k-1}
ããŠ, m < k ãªã m æåã®åã« k çš®é¡ã®æåãçŸããããšã¯ãªãã®ã§,
Σ_{i=0}^{k-1} (-1)^i C(k, i+1) (k-1-i)^m
= k^m - Σ_{i=0}^k (-1)^i C(k, i) (k-i)^m
= k^m
ãšãªãããšã«æ³šæãããš,
E = k - 1 + Σ_{i=0}^{k-1} (-1)^i C(k, i+1) (k/(i+1)) ((k-1-i)/k)^{k-1}
= k - 1 + Σ_{i=0}^{k-1} (-1)^i C(k, i+1) (k/(i+1) - 1) ((k-1-i)/k)^{k-2}
= k - 2 + Σ_{i=0}^{k-1} (-1)^i C(k, i+1) (k/(i+1)) ((k-1-i)/k)^{k-2}
= âŠ
= Σ_{i=0}^{k-1} (-1)^i C(k, i+1) (k/(i+1))
ã§ã.
Σ_{i=0}^{k-1} (-1)^i C(k, i+1) (1/(i+1))
= Σ_{i=0}^{k-1} (-1)^i C(k, i+1) â«_0^1 x^i dx
= â«_0^1 (Σ_{i=0}^{k-1} (-1)^i C(k, i+1) x^i) dx
= â«_0^1 (1 - (Σ_{i=0}^k (-1)^i C(k, i) x^i))/x dx
= â«_0^1 (1 - (1-x)^k)/x dx
= â«_0^1 (1 - t^k)/(1-t) dt
= â«_0^1 Σ_{i=0}^{k-1} t^i dt
= Σ_{i=0}^{k-1} 1/(i+1)
ãä»£å ¥ããŠ,
E = k Σ_{i=0}^{k-1} 1/(i+1)
ãçŽæ¥èšç®ã§ãåãããŸã. é¢çœã.
ãããïœããããé£ããããªããšã«é¢ä¿ããŠããã§ãããïŒïŒŸïŒŸïŒ
ãèªåãå¶åŸ¡ã§ããã»ã§ãªããã®æå³ãããããããªãã®ã§ãã
èŠã¯æå·ã®ãã¹ãŠãïŒïŒïŒã«ããŒãã«ã«å¯Ÿå¿ããŠããããã§ãªã
äžéšã«ãã€ãºãå
¥ã£ãŠããŠããã§ãããŒãã«ã«ãã£ãŠåçŸã§ãã
éšåãã©ã®çšåºŠäžèŽã§ããããèŠãããšããããšã§ãããããã§
ããããïŒ
ãããã¯æå·ã®ãã€ãºã«å¯Ÿãã埩å æ§ãèæ§ãç¥ããããšãïŒ
ããŒã£ãšãããã§ã¯ãªãã§ããã©ã³ãã ã«å¹³æãå
¥åããã°ã
ããŒãã«ã(è€æ°å)åç
§ãããšãã«ãã©ã³ãã ãªåç
§ããããã ãã
ãšããèãæ¹ãããŸãã
ãšããããå
¥åéšåã«è¿ããšããã§ã¯ãå¹³æã«éµ(ã®äžéš)ãå ç®ããããã®
ããããŒãã«ã«å
¥åãããŸãããããããã®ãäºã€æºåããŸãã
ããšãã°ããŒãã«ãT[] x1~x8ãå¹³æ k1~k8ãéµãšããŸãã
k1~k8ã¯åœç¶æªç¥ã§ããx1~x8ã¯èªç±ã«éžæã§ãããšããŸãã
éäžã«ããŒãã«åç
§T[x1+k1],T[x2+k2],...,T[x8+k8]ãšãã£ããšããŸãã
ãã®ãšãã«ãT[x1+k1]=T[x2+k2]ã§ããããšããããã°ã
x1-x2=k1-k2
ã§ããããšãããããŸãã
éµãµã€ãºãäžååœãã8bitã§ããã°ãéµ8åãæ¢çŽ¢ããã«ã¯2^64åã®è©Šè¡ãå¿
èŠã«ãªããŸãããk1^k2ã®å€ãããã£ãŠããã°æ¢çŽ¢éã¯2^56åã§å
åã«ãªããŸ
ãã
ã§ãT[x1+k1]=T[x2+k2]ããããã°ããšæžããŸããããæ®éã¯ããããŸããã
ãšããããåãTã2ååç
§ãããšããéãTãåç
§ãããããé«éã«åç
§ã§ã
ããšããŸãã(ãœãããŠã§ã¢å®è£
ã§ãã£ãã·ã¥ã¡ã¢ãªã«ããããããªããŠãã
ã¢ãã«ãèããã°æ²¿ãããããªå®¶åºã§ãªãããšã¯ãããã§ããã)
ãããããšããå
šäœã®æå·åæéã枬å®ãããšãã«ãT[x1+k1]=T[x2+k2]ãä»®
å®ããŠçµ±èšéãç®åºããã©ã³ãã ãªéçšãšæ€å®ããã°ãéçšãæ£ãããã©ãã
å€å®å¯èœãªããã§ãã
ã§ãä»åç¥ãããã£ãã®ã¯ãä»®å®ããªãå Žåãšä»®å®ããå Žåã®ãŠããŒã¯ãªããŒ
ãã«åç
§ã®æ°ã®å·®ãç¥ãããã£ãããã§ããå·®ãå°ãããã°å€ãã®è©Šè¡ããã
å¿
èŠãããããã§ãã