ææ°é¢æ°ã®Exp^xãã¯ãäžæè°ãªãã®ã§ãã
ãã®Exp^xã¯ã埮åããŠãç©åããŠããã®ãŸãŸã§ããã
質åïŒïŒ
ããããã®ããã«åŸ®åãŸãã¯ç©åããŠããã®ãŸãŸãªã®ã¯ãExp^x以å€ã«ããã®
ãããã§ããããïŒ
質åïŒïŒ
ãããããé¢æ°f(ïœ)ãïŒããšãã°ãExp^xçãã»ãã§ãOKïŒã«ãããé¢æ°g(x) ã äœ
çš
ããããããå ŽåãExp^xã®åŸ®ç©åã®ããã«ããã®ãŸãŸå€ãããªããããªé¢æ°g(x)ã¯
ãããããã®ã§ããããïŒ
ããããg(f(x))=f(x)ãããïŒïŒ
質åïŒïŒ
ããããªããExp^xã¯ã埮åããŠãç©åããŠããã®ãŸãŸãªã®ã§ããããïŒãã®æå³
ãããïŒïŒïŒã¯ãã©ã®ããã«è§£éããã°ããã®ã§ããããïŒ
ããããŸããExp^xã埮åããŠãç©åããŠããã®ãŸãŸã§ãããããªæ¥åžžçãªäŸã¯
ããããªãã§ããããïŒ
æãããã£ãçŽ æŽãªçåã§ããåæ©çãªããšã§ç³ãèš³ããããŸãããã
ãããããé¡ãããããŸãã
> ææ°é¢æ°ã®Exp^xãã¯ãäžæè°ãªãã®ã§ãã
>
> ãã®Exp^xã¯ã埮åããŠãç©åããŠããã®ãŸãŸã§ããã
>
> 質åïŒïŒ
> ããããã®ããã«åŸ®åãŸãã¯ç©åããŠããã®ãŸãŸãªã®ã¯ãExp^x以å€ã«ããã®
> ãããã§ããããïŒ
>
ã¯ããä»ã«ããããŸããããšãã°ã 3 Exp^x
ã€ãŸããExp^x ã® 3 åããšããé¢æ°ãã
ã埮åããŠãç©åããŠããã®ãŸãŸããšããæ§è³ªãæã£ãŠããŸãã
> 質åïŒïŒ
> ãããããé¢æ°f(ïœ)ãïŒããšãã°ãExp^xçãã»ãã§ãOKïŒã«ãããé¢æ°g(x) ã äœ
> çš
> ããããããå ŽåãExp^xã®åŸ®ç©åã®ããã«ããã®ãŸãŸå€ãããªããããªé¢æ°g(x)ã¯
> ãããããã®ã§ããããïŒ
>
> ããããg(f(x))=f(x)ãããïŒïŒ
>
ãããŸããããšãã°ã
f(x) = 3 ïŒã€ãŸããæççã« 3 ãšããå€ãæã€å®æ°å€é¢æ°ãæ©ã話ãïŒæ¬¡åŒã§ãïŒ
g(x) = x^2 - x - 3 ïŒãšããïŒæ¬¡åŒã§ããããããé¢æ°ïŒ
ãèããã°ããã¹ãŠã® x ã«å¯Ÿã㊠g(f(x))=f(x) ãæç«ããŸãã
> 質åïŒïŒ
> ããããªããExp^xã¯ã埮åããŠãç©åããŠããã®ãŸãŸãªã®ã§ããããïŒãã®æå³
> ãããïŒïŒïŒã¯ãã©ã®ããã«è§£éããã°ããã®ã§ããããïŒ
> ããããŸããExp^xã埮åããŠãç©åããŠããã®ãŸãŸã§ãããããªæ¥åžžçãªäŸã¯
> ããããªãã§ããããïŒ
>
埮åæ¹çšåŒã®æç§æžããäœã§ãããã§ãããã芧ã«ãªã£ãŠãæ¬ã®åãã®ã»ãã
æ¢ããŠã¿ãŠãã ããã
âf'(x) = f(x) ãæºããé¢æ°ã¯ c Exp^x ïŒc ã¯å®æ°ãã€ãŸã f(x) ã¯
ææ°é¢æ°ã®å®æ°åïŒã«éãâ
ãšããããšããã©ããã«èª¬æããŠããã¯ãã§ãã埮åæ¹çšåŒãšããã®ã¯ã
èªç¶çŸè±¡ãèšè¿°ããããã®ãã®ïŒããšãã°éåæ¹çšåŒïŒã§ãããã解ãããã«
ããã¯äžçªåºæ¬çãªãåºçºç¹ãšãèšããé¢æ°ã§ãããã
Exp^x ã¯ãã f'(x) = f(x) ãæºããé¢æ°ã§ãã£ãŠ c = f(0) = 1 ãšãªããã®ã
ãšããæ§è³ªã§ãäžæçã«ç¹åŸŽã¥ãããããã®ã§ããã㯠Exp^x ãšããé¢æ°ã®
å®çŸ©ãšèšã£ãŠãããã®ã§ã¯ãªãã§ããããïŒ
tegra
f(x)=0
ã£ãŠã®ãã
F(x)=0
f'(x)=0
ã«ãªããŸãã
#é¢æ°ã¯é¢æ°
--
Yoshitaka Ikeda mailto:ik...@4bn.ne.jp
tegraããã®<200208...@a.ne.jp>ãã
>> 質åïŒïŒ
>> ãããããé¢æ°f(ïœ)ãïŒããšãã°ãExp^xçãã»ãã§ãOKïŒã«ãããé¢æ°g(x) ã äœ
>> çš
>> ããããããå ŽåãExp^xã®åŸ®ç©åã®ããã«ããã®ãŸãŸå€ãããªããããªé¢æ°g(x)ã¯
>> ãããããã®ã§ããããïŒ
>>
>> ããããg(f(x))=f(x)ãããïŒïŒ
>>
>ãããŸããããšãã°ã
>f(x) = 3 ïŒã€ãŸããæççã« 3 ãšããå€ãæã€å®æ°å€é¢æ°ãæ©ã話ãïŒæ¬¡åŒã§ãïŒ
>g(x) = x^2 - x - 3 ïŒãšããïŒæ¬¡åŒã§ããããããé¢æ°ïŒ
>ãèããã°ããã¹ãŠã® x ã«å¯Ÿã㊠g(f(x))=f(x) ãæç«ããŸãã
ä»»æã®f(x)ã«å¯ŸããŠã®g(x)ããå°ãã®ããã§ãã®ã§ã
g(x)=x
ãå¯äžã®è§£ã§ã¯ãªãã§ããããã
--
Yuji Nomura mailto:yno...@sam.hi-ho.ne.jp
å¯äžã§ã¯ãªãã§ããã
äžžå±±ããã®çåã¯tegraããã®ããããã«ãã¹ãŠåŸ®åæ¹çšåŒã®æ§è³ªã«åž°ãã
ããã§ããã©ãäŸãã°ã質åïŒã®å Žååæé¢æ°ã®åŸ®åã®æ§è³ªããããã
埮åæ¹çšåŒã§è¡šãã°
ïŒïœïœïŒïœïŒ/dxïŒïŒâïœïŒïœïŒ/âïœïŒïŒïœïŒïœïŒãã»ã»ã»ïŒïŒïŒ
ãšãªããŸããé©åœãªïœïŒïœïŒãäžããã°ããã«å¯Ÿå¿ããŠïœïŒïœïŒã«é¢ãã埮åæ¹çšåŒã
åŸãããŠããã解ãã°ïœïŒïœïŒãæ±ãŸããŸãã
äœã§ããããã§ããã©äŸãã°ïœã
ïœïŒïœïŒïŒïœ^n
ãšããïœãïœä¹ããé¢æ°ãšããã°ïŒïŒïŒã¯
ïŒïœïœ/dxïŒïŒïœ ïœ^(n-1)ïŒïŒïœ
å€æ°åé¢ã§ããŠ
ïœ ïœ^(n-2) ïœïœïŒïœïœ
䞡蟺ãç©åããŠæŽçããã°
ïœïŒïœïŒïŒ[âïœïŒïŒïŒ1/nïŒïœïŒïŒ£ïŒïœ](n-1)ããïŒïœâ ïŒïŒïŒ£ã¯ç©åå®æ°
ãšãªããŸãããã¡ããããã以å€ã«ãïœãããããèããã°ããã«å¯Ÿå¿ããŠ
ïœã®åŸ®åæ¹çšåŒã¯ãããã§ãåºãŠããŸããïŒè§£ãã解ããªãã¯å¥ã«ããŠïŒ
äžžå±±ããã¯è§£ã®æ§è³ªã§ãã®ãèããŠããããã§ããã©ã解ã®æºãã
埮åæ¹çšåŒã§ãã®ãèããã°ããåºãäžçãéããŠããããã§ãã
äžžå±±ããã埮åæ¹çšåŒã®åºç€ãå匷ãªãã£ãã»ããè¯ããšæããŸãã
ããããã°ãã£ãšèŠéãåºããã§ããããç©çã楜ãããªããŸããã
ã§ã¯ã
> f(x) = 3 ïŒã€ãŸããæççã« 3 ãšããå€ãæã€å®æ°å€é¢æ°ãæ©ã話ãïŒæ¬¡åŒã§
ãïŒ
> g(x) = x^2 - x - 3 ïŒãšããïŒæ¬¡åŒã§ããããããé¢æ°ïŒ
> ãèããã°ããã¹ãŠã® x ã«å¯Ÿã㊠g(f(x))=f(x) ãæç«ããŸãã
>
> ãšãªããŸãããã¡ããããã以å€ã«ãïœãããããèããã°ããã«å¯Ÿå¿ããŠ
> ïœã®åŸ®åæ¹çšåŒã¯ãããã§ãåºãŠããŸããïŒè§£ãã解ããªãã¯å¥ã«ããŠïŒ
>
ãªãã»ã©ãããã§ãããã§ã¯ãäžèšã¯ã©ãã§ããããïŒæ¬¡ã®åŸ®åæ¹çšåŒããããšããŸ
ãã
y=g''(x)-2g'(x)=0
ãã®è§£ã¯ã
(1/2)*E^(2*x)*C[1] + C[2]
ã§ãããyã
y^2ãããã3y ã«ããŠãããã¯ã解ã¯ã
(1/2)*E^(2*x)*C[1] + C[2]
ã§ããyã¯ãïŒéã®åŸ®åæ¹çšåŒã§ãããæŽã«ãyã«äœããã®å€æãšèšãã®ããæäœãšèš
ãã®ã
ãäœçšãããŠé«éã«ããå Žåãåã解
(1/2)*E^(2*x)*C[1] + C[2]
ã¯ãç°¡åã«åŸãããã§ããããïŒïŒçããèŠãªãããæäœããŠè§£ãåŸãã®ã¯é§ç®ã§
ããïŒ
äŸãã°ãyããåçŽã«
ïœâãããy'' ããŠãã解ã¯ã
(1/4)*E^(2*x)*C[1] + C[2] + x*C[3]
(1/8)*E^(2*x)*C[1] + C[2] + x*C[3] + x^2*C[4]
ã«ãªããyã®è§£ã(1/2)*E^(2*x)*C[1] + C[2]ããšã¯
éã£ãŠããŸããåŠäœã§ããããïŒ
ããã¯
ïœïŒïœïŒïŒïœïŒïŒïŒ1/nïŒïœïŒïŒ£ïŒïœïŒŸ(1/(n-1))
ã§ãããn-1ä¹æ ¹ã§ããã环ä¹ã§æžãã°äžã®ããã«ãªããŸãã
> ïœâãããy'' ããŠãã解ã¯ã
>
> (1/4)*E^(2*x)*C[1] + C[2] + x*C[3]
>
> (1/8)*E^(2*x)*C[1] + C[2] + x*C[3] + x^2*C[4]
>
> ã«ãªããyã®è§£ã(1/2)*E^(2*x)*C[1] + C[2]ããšã¯
>
> éã£ãŠããŸããåŠäœã§ããããïŒ
ãŸããäžžå±±ããã«èšãããã®ã¯ããŸãæã§åŸ®åæ¹çšåŒã解ããŠã¿ãŠãã ããã
ããããããããã£ãåæ©çãªééãã¯ãªããªããŸãã
ã€ãŸããïœïŒïŒãªãã§ãããïœâãïœââãïŒã«ãªããŸãã
ã§ããããäžã§ããC[3]ãC[4]ã¯ïŒã«ãªããŸãã
ïœâïŒg'''(x)-2g''(x)=0
ãããç©åããŠ
ïœïŒg''(x)-2g'(x)=C[3]ïŒïŒ
ïœââã®å Žåãåæ§ã§ãã
äžçªãããªãã®ã¯Mathematicaã®çµæãéµåã¿ã«ããŠããããšã§ãã
埮åæ¹çšåŒã§è§£ããã¡ããšåºãã«ã¯åææ¡ä»¶ãå¢çæ¡ä»¶ãèæ
®
ããªããŠã¯ãªããŸãããäžžå±±ããã¯ãããå®å
šã«æããŠãŸãã
ã§ãããåæ©çãªåŸ®åæ¹çšåŒã«ã€ããŠã¯æé€ãšããŠæžç±ã§å匷ããŠããã¹ãã§ãã
ïŒéã®ç·åœ¢åŸ®åæ¹çšåŒã®è§£æ³ããã以å€ã§ãååã®ã€ããæåã©ããã®åŸ®åæ¹çšåŒ
ã«ã€ããŠã¯ïŒåºŠã¯ãèªåã®æã§è§£ããŠã¿ãã¹ãã§ããããããããããã£ãåæ©çãª
ééãã¯ãªããªããŸãããããªããäžçªãããããšæã£ãŠããç©çã«ã€ããŠãããã£ãš
èŠéãã®ãã圢ã§å±éããããšãå¯èœã«ãªããŸãã
äžã®äŸãæèšçãªã®ã¯ãå¢çæ¡ä»¶ïŒå
ã®äŸã§ã¯ïœïŒïŒïŒãèæ
®ããã°ã©ããªé«éã®
埮åæ¹çšåŒã§ãçµå±ã¯ä¿æ°ããã¡ããšæ¶ããŠãããŠç°¡åã«ãªããšããããšã§ãã
å
ã«äžžå±±ãããæçš¿ããMathematicaã®é«éã®åŸ®åæ¹çšåŒã§ãæããã¯åæ§ãª
èªæãªå¢çæ¡ä»¶ãããã·ãã·æ¶ããŠããé
ãããããããªãããšæããŸãã
ãŸãã¯è
°ãèœã¡çããŠåŸ®åæ¹çšåŒã®æžç±ïŒç©çåãã®ïŒã§å匷ãããããšã
匷ãã奚ãããŸãã
ãã€ãããè¿äºé ããŸããŠæè¬èŽããŠãããŸãã
> > ïœïŒïœïŒïŒ[âïœïŒïŒïŒ1/nïŒïœïŒïŒ£ïŒïœ](n-1)ããïŒïœâ ïŒïŒïŒ£ã¯ç©åå®æ°
>
å®ã¯ãå€ã ãšæã£ãŠãŸããã
> ããã¯
>
> ïœïŒïœïŒïŒïœïŒïŒïŒ1/nïŒïœïŒïŒ£ïŒïœïŒŸ(1/(n-1))
>
> ã§ãããn-1ä¹æ ¹ã§ããã环ä¹ã§æžãã°äžã®ããã«ãªããŸãã
>
ãããŒãã»ãã®å°ãã ããããããæ°ãããŸãã
>
> ã€ãŸããïœïŒïŒãªãã§ãããïœâãïœââãïŒã«ãªããŸãã
> ã§ããããäžã§ããC[3]ãC[4]ã¯ïŒã«ãªããŸãã
>
> ïœâïŒg'''(x)-2g''(x)=0
>
> ãããç©åããŠ
>
> ïœïŒg''(x)-2g'(x)=C[3]ïŒïŒ
>
> ïœââã®å Žåãåæ§ã§ãã
>
ãã£ãããéãã§ããããŸãã
ããããããŸãããããããšãããããŸããã
確ãã«ã
質åïŒãããèŠãã
g(f(x))=f(x)
ãšãªã£ãŠãŸããã䞡蟺ãïœã§åŸ®åããã
ïŒïœïœïŒïœïŒ/dxïŒïŒâïœïŒïœïŒ/âïœïŒïŒïœïŒïœïŒ
ã§ãªããŠ
ïŒïœïœïŒïœïŒ/dxïŒïŒâïœïŒïœïŒ/âïœïŒïŒïœ'ïŒïœïŒ
ã§ãããå³èŸºãïœã§åŸ®åããã®ãå¿ããŠãŸããã
ãšãããšïŒâïœïŒïœïŒ/âïœïŒïŒïŒãšãªããŸãããïœïŒïœïŒïŒïœã§
çµå±ããŒãããžãŒã§ããã
ïœïŒExp[x]ãªãïœãšããŠïŒãæãããšããèªæãªæçæŒç®ä»¥å€ã«
ä»»æåã®åŸ®åæŒç®ãæçæŒç®ã«ãªããŸãããä»ã®ïœã«ã€ããŠã¯
ã©ããªãã§ãããããã
ç¥ãããã®ã¯éèªæãªæçæŒç®ãåžžã«èããããšãã§ããã®ãïŒ
ã£ãŠããšã§ãããïŒ
ïœïŒExp[kx]ãªãïœïŒïŒ1/kïŒïœ/ïœïœããšããŸãã
埮åæŒç®ã®ãããªç·åœ¢æŒç®ä»¥å€ã«ãããã£ãæ§è³ªãæºãããã®ã
ååšããã®ãã¯ããããããŸãããæ°åŠãã£ãŠãæ¹ã®ã»ãã詳ããããã
ããã¯å®å
šã«ééã£ãŠãŸãããå³èŸºãïœã§åŸ®åããã®ãå¿ããŠãŸããã
ã§ã埮åããŠãçµå±ããŒãããžãŒãªã®ã§å
ã®æçš¿ã¯ç¡èŠããŠãã ããã
ãããŸãããäžèšã«ã€ããŠãæ瀺é ããŸããã幞ãã§ãã
y=5g''(x)/g(x)
z=kããïŒäœããkãã¯ãïŒã以å€ïŒ
ã§ã
y=ïœ
ãšãããã®è§£ã¯ã
E^((Sqrt[k]*x)/Sqrt[5])*C[1] + C[2]/E^((Sqrt[k]*x)/Sqrt[5])
ã§ãã
yã¯ïŒéã®åŸ®åæ¹çšåŒã§ãããæŽã«ãyã«äœããã®å€æãšèšãã®ãã
æäœãšèšãã®ããäœçšãããŠé«éã«ããå Žåãåã解
E^((Sqrt[k]*x)/Sqrt[5])*C[1] + C[2]/E^((Sqrt[k]*x)/Sqrt[5])
ã¯ãç°¡åã«åŸãããã§ããããïŒïŒçããèŠãªãããæäœããŠè§£ãåŸãã®ã¯
é§ç®ã§ããïŒ
äŸãã°ãyããåçŽã«
ïœâãããy'' ããŠãã
ïœâ=ïœ ããy''=ïœãã«ããå Žå
解ã¯ãéã£ãŠãããšæããŸãããïŒå šãèªä¿¡ç¡ããªã£ãŠãŸãããããïŒ
åŠäœã§ããããïŒ
> ãŸãã¯è
°ãèœã¡çããŠåŸ®åæ¹çšåŒã®æžç±ïŒç©çåãã®ïŒã§å匷ãããããšã
> 匷ãã奚ãããŸãã
ãå®ã¯ãå°éçã«ç©çã¯å匷ããŠãããŸãããã埮åæ¹çšåŒã¯ã倧æãã©ãã©ã¹å€æ
ãã
å€æ°åé¢çããŠè§£ãæ¹æ³çã®åºç€ãã»ãã®å°ãåŠã³ãŸããã
è³æ Œè©Šéšãç±ç®¡ç士ãåéšæã«ã¯ãç±äŒéã®èšç®ããè©Šéšæã«ã埮åæ¹çšåŒãäœã£ãŠ
解ããããä»äºã§ã¯ãç±äº€æåšã®èšèšçã«ãå®å
šãµã€ãããšã£ãŠãã®ãããç°¡å
ã«è§£ãã圢ã«ããŠã解ãããããŠãŸããã
ããããä»ã¯ãæ®æ®µå
šã䜿çšããŸããã®ã§ãå¿ããŠãããŸãã
ãèª ã«ç³ãèš³ããããŸãããããå¯å€§ãªãæ°æã¡ã§ããè¿äºé ããã°å¹žãã§ãã
ïŒå
ã»ã©ã¯ãèªåã§ãã¢ããšæãã質åãããŠãå°ã
ãåŸæããŠãŸããã§ãããŸãã
åœããåã®ããšãã質åããŠããããããããããããã§ããããããã質åããŸ
ããïŒ
ãããããé¡ãããŸãã
In article <200208...@a.ne.jp> te...@anet.ne.jp writes:
>> 質åïŒïŒ
>> ããããªããExp^xã¯ã埮åããŠãç©åããŠããã®ãŸãŸãªã®ã§ããããïŒãã®æå³
>> ãããïŒïŒïŒã¯ãã©ã®ããã«è§£éããã°ããã®ã§ããããïŒ
>> ããããŸããExp^xã埮åããŠãç©åããŠããã®ãŸãŸã§ãããããªæ¥åžžçãªäŸã¯
>> ããããªãã§ããããïŒ
>埮åæ¹çšåŒã®æç§æžããäœã§ãããã§ãããã芧ã«ãªã£ãŠãæ¬ã®åãã®ã»ãã
>æ¢ããŠã¿ãŠãã ããã
>
>âf'(x) = f(x) ãæºããé¢æ°ã¯ c Exp^x ïŒc ã¯å®æ°ãã€ãŸã f(x) ã¯
>ææ°é¢æ°ã®å®æ°åïŒã«éãâ
>
>ãšããããšããã©ããã«èª¬æããŠããã¯ãã§ãã埮åæ¹çšåŒãšããã®ã¯ã
>èªç¶çŸè±¡ãèšè¿°ããããã®ãã®ïŒããšãã°éåæ¹çšåŒïŒã§ãããã解ãããã«
>ããã¯äžçªåºæ¬çãªãåºçºç¹ãšãèšããé¢æ°ã§ãããã
>
>Exp^x ã¯ãã f'(x) = f(x) ãæºããé¢æ°ã§ãã£ãŠ c = f(0) = 1 ãšãªããã®ã
>ãšããæ§è³ªã§ãäžæçã«ç¹åŸŽã¥ãããããã®ã§ããã㯠Exp^x ãšããé¢æ°ã®
>å®çŸ©ãšèšã£ãŠãããã®ã§ã¯ãªãã§ããããïŒ
ãã®ãããã
ãäœãå®çŸ©ã§äœãåž°çµãããäžæã«æ±ºãŸããªããšããç¶æ³ã
æ··ä¹±ã®å
ã«ãªã£ãŠãããšæãã®ã§ããâŠâŠ
éåžžãçŸä»£ã®æ°åŠæè²ã§ã¯ãææ°é¢æ°ã
ãåªä¹ïŒèªç¶æ°ä¹ïŒãã®æŠå¿µã®æ¡åŒµãšãã圢ã§å°å
¥ããŠãããŸãã
ããããåŸã
ã®å¿çšã®ããšãŸã§èãããšã
ããããf'(x) = f(x) ãæºããããšããã®ãææ°é¢æ°ã®å®çŸ©ã§ããã
ãããâããŸããŸâåªä¹ã®æŠå¿µãæ¡åŒµãããã®ã«äžèŽããŠãã
ãšèããæ¹ãç解ããããåŽé¢ããããŸãã
ãã®èãæ¹ã«åºã¥ãã°ã
ããªããExp^xã¯ã埮åããŠãç©åããŠããã®ãŸãŸãªã®ã§ããããïŒã
ã«å¯Ÿããçãã¯
ãå
ã
ãã®ããã«å®çŸ©ãããé¢æ°ã ããã
ãšããã人ãå°ã£ããããªãã®ã«ãªã£ãŠããŸããŸãã
ãåªä¹ã®æŠå¿µã®æ¡åŒµããšã埮åããŠãç©åããŠããã®ãŸãŸããšã
äžèŽããã®ãåœç¶ã ãšæããããããªèª¬æã£ãŠäœããããŸãããïŒ
ãA^xãã埮åã®å®çŸ©åŒã«ä»£å
¥ããŠå€åœ¢ããã°
ãA^xãèªèº«ã®å®æ°åã«ãªãããšã¯ç°¡åã«ç€ºãã
ïŒäœãã(A^d - 1) / d ã dâ0 ã§åæããããšãåæãšããŠïŒ
ã®ã§ãããããã£ãŠäœãšãªãéšããããããªæ°åã«ãªãåŒå€åœ¢ã§ã
ããŸã²ãšã€ãåœç¶ããšããæ°ã«ãªããªããã§ãâŠâŠ
ã¡ãªã¿ã«ã
In article <bhd6bt$904$1...@caraway.media.kyoto-u.ac.jp> ik...@4bn.ne.jp writes:
>f(x)=0
>ã£ãŠã®ãã
>F(x)=0
>f'(x)=0
>ã«ãªããŸãã
ãšãããã©ããŒããããŸããããããããc Exp^xãã®äžçš®ã§ãã
åã«ãc = 0ããªã ãã
æžç° åïŒ æ»è³çç«çµç¶æ¹åç©é€š
to...@lbm.go.jp
äžžå±±ã§ããããŸãã
> ããã¯å®å
šã«ééã£ãŠãŸãããå³èŸºãïœã§åŸ®åããã®ãå¿ããŠãŸããã
> ã§ã埮åããŠãçµå±ããŒãããžãŒãªã®ã§å
ã®æçš¿ã¯ç¡èŠããŠãã ããã
äºè§£ããããŸãããæ¬åœã«ãç§ããç¥ãããã®ã¯ã
çŸåšãæçš¿äžã®è³ªåã§ãã§ãããããŸããã
äœåããããããé¡ãããããŸãã
ãŸããMathematicaã§ããïŒãã®ãããã¯èªåã®æã§è§£ããªããšã»ã»ã»
> yã¯ïŒéã®åŸ®åæ¹çšåŒã§ãããæŽã«ãyã«äœããã®å€æãšèšãã®ãã
ãã®è¡šçŸãããããã§ãããïœïŒïœã¯ïœïŒïœïŒã«ã€ããŠïŒéã®åŸ®åæ¹çšåŒ
ã£ãŠããšã§ããã
> æäœãšèšãã®ããäœçšãããŠé«éã«ããå Žåãåã解
>
> E^((Sqrt[k]*x)/Sqrt[5])*C[1] + C[2]/E^((Sqrt[k]*x)/Sqrt[5])
>
> ã¯ãç°¡åã«åŸãããã§ããããïŒïŒçããèŠãªãããæäœããŠè§£ãåŸãã®ã¯
>
> é§ç®ã§ããïŒ
>
> äŸãã°ãyããåçŽã«
>
> ïœâãããy'' ããŠãã
>
> ïœâ=ïœ ããy''=ïœãã«ããå Žå
ããã¯ééã£ãŠãŸããïœãïŒé埮åãããïœã埮åããªããšã
ããšããšïœïŒïœã¯æãç«ã£ãŠããããã§ãããïŒããããã
ïœâïŒïœâïŒïŒã§ããããã¯ã解ã¯åãã§ãã
> > ãŸãã¯è
°ãèœã¡çããŠåŸ®åæ¹çšåŒã®æžç±ïŒç©çåãã®ïŒã§å匷ãããããšã
> > 匷ãã奚ãããŸãã
>
> ãå®ã¯ãå°éçã«ç©çã¯å匷ããŠãããŸãããã埮åæ¹çšåŒã¯ã倧æãã©ãã©ã¹å€æ
> ãå€æ°åé¢çããŠè§£ãæ¹æ³çã®åºç€ãã»ãã®å°ãåŠã³ãŸããã
> è³æ Œè©Šéšãç±ç®¡ç士ãåéšæã«ã¯ãç±äŒéã®èšç®ããè©Šéšæã«ã埮åæ¹çšåŒãäœã£ãŠ
> 解ããããä»äºã§ã¯ãç±äº€æåšã®èšèšçã«ãå®å
šãµã€ãããšã£ãŠãã®ãããç°¡å
> ã«è§£ãã圢ã«ããŠã解ãããããŠãŸããã
> ããããä»ã¯ãæ®æ®µå
šã䜿çšããŸããã®ã§ãå¿ããŠãããŸãã
> ãèª ã«ç³ãèš³ããããŸãããããå¯å€§ãªãæ°æã¡ã§ããè¿äºé ããã°å¹žãã§ãã
ãããååå¯å€§ã§ãããããªãã®çåã®å€ããã¡ããã£ãšåŸ®åæ¹çšåŒãå匷ããã°
解æ¶ãããããã®ããšã ããã¢ããã€ã¹ããã®ã§ããäžåºŠãæã§è§£ããŠã¿ãŠãã ããã
ãããããšä»ãŸã§èŠããªãã£ããã®ãèŠããããã«ãªããŸãã
ïŒéã®åŸ®åæ¹çšåŒã解æçã«è§£ããæåã©ããã®åŸ®åæ¹çšåŒãããã ãã§ã
æã§è¿œã£ãŠã¿ããšæå€ã«å€ãã®å Žé¢ã«ãããã£ãé¡ã®åŸ®åæ¹çšåŒãé¡ãåºããŠ
ããããšã«æ°ä»ããŸããããããããã§äœ¿ãããå€æ°å€æãããçš®ã®ããªãããŒãª
ææ³ãå¥ãªå Žé¢ã§ãæå¹ãªããšã£ãŠçµæ§ãããŸãã
ãããã£ãããšãç¥ã£ãšããšå
ã®ãããé«éã®åŸ®åæ¹çšåŒãªããŠãã£ãšåçŽãª
埮åæ¹çšåŒã«éå
ããããããããŸããã
決ããŠé åãã§ãªãã§ããïŒæ¥ãããã°ã§ããã§ãããã
> ïŒå
ã»ã©ã¯ãèªåã§ãã¢ããšæãã質åãããŠãå°ã
ãåŸæããŠãŸããã§ãããŸãã
> åœããåã®ããšãã質åããŠããããããããããããã§ããããããã質åããŸ
> ããïŒ
ãªãã§åŸæãããã§ããïŒå
šç¶åŸæããå¿
èŠãªãã§ããåã«ç¥ããªãã ããš
ããããšã¯äœãæ¥ããããšã§ã¯ãããŸããããããããã§ã«ç¢ºç«ãããŠããããšã
å
šãå匷ããããããªã«æåŠããŠãçžå¯Ÿè«ã¯ééã£ãŠããçãªæ¹åãžéã£ãŠããŸã
ããšã®ã»ãã倧ãã«æ¥ãã¹ãããšã§ãã
ããªãã®å Žåãèªåã®ããããªãããšãçŽ çŽã«çåã®åœ¢ã§æçš¿ããŠãŸããã
ãŸã ç§åŠçæ
床ã«è¿ãã®ã§ãããã ããã®çåãå匷äžè¶³ãããããšæããã
ãã®ãå€ãã®ã§ããã£ãããªããªãã£ãŠæããããŠããã§ãã
ãã¶ããåŠéšã¬ãã«ã®ç©çãæ°åŠãä¿®ããã ãã§ãéåéããšæããŸããã
äœããçºèŠããããšããåæ©ã®éšåã¯éåžžã«å€§ãã人ã ãšæããã§ãæ¯éãããã
æ¢æ±ããããã«ããã®éå
·ç«ãŠã§ããæ°åŠãç©çã®ç¥èãæžç±çãä»ãªã
æŸé倧åŠãªããŠã®ããããŸããããããã£ããã®ãå©çšããŠèº«ã«ä»ããã¹ãã ãš
æããŸãã
ãŸããŸãäœèšãªãäžè©±ã«ãªã£ã¡ãããŸãããïŒïŒŸïŒŸïŒïŒ
> ããã¯ééã£ãŠãŸããïœãïŒé埮åãããïœã埮åããªããšã
> ããšããšïœïŒïœã¯æãç«ã£ãŠããããã§ãããïŒããããã
> ïœâïŒïœâïŒïŒã§ããããã¯ã解ã¯åãã§ãã
>
ãã®éãã§ããããŸãã質åã®ä»æ¹ãæªãã£ãã§ãã
y=5g''(x)/g(x)
z=kããïŒäœããkãã¯ãïŒã以å€ïŒ
ãšããŸãã
y=ïœ
ã®é¢ä¿ãæç«ããŸããæŽã«
ïŒyã«äœããã®äœçšããããŠãé«éã®åŸ®åæ¹çšåŒã«ããïŒ
ïŒ........
ïŒïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒ
ïŒïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒïŒyïŒïœ
ã®é¢ä¿ãæç«ããããïŒyã«äœããã®äœçšããããŠãé«éã®åŸ®åæ¹çšåŒã«ããïŒ
åŒã¯ãç°¡åã«åŸãããã§ããããïŒ
äŸãã°ãïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒã¯ã ïœâã§ã¯
ïŒéã«ãªããŸãããïœâïŒyïŒïœããšã¯ãªããªãã®ã§ãé§ç®ã§ãããã
èããããæ¹æ³ãšããŠã¯ãaïœâ+by+c ã®ãa,b,cã«é©åœãªæ°ã代å
¥ããŠãaïœâ+by+c
ïŒyïŒïœã
ãæ±ããæ¹æ³ããããããªæ°ãããŸããã§ããããã§ãåŸãããã®ã§ããããïŒ
>
> ãŸããŸãäœèšãªãäžè©±ã«ãªã£ã¡ãããŸãããïŒïŒŸïŒŸïŒïŒ
>
ãšãã§ããªãã§ãããå¿ åæè¬èŽããŸãã
倧æãèªã¿ãŸããã埮åæ¹çšåŒãã®ãæ¬ããèªã¿è¿ããŠã¿ãŸããäœããåãæ¢ããã
äžèšããæ瀺é ããã°å¹žãã§ãã
(äžéšãééã£ãŠãããŸãããæ¹æ£ãïŒãïŒ
> ããã¯ééã£ãŠãŸããïœãïŒé埮åãããïœã埮åããªããšã
> ããšããšïœïŒïœã¯æãç«ã£ãŠããããã§ãããïŒããããã
> ïœâïŒïœâïŒïŒã§ããããã¯ã解ã¯åãã§ãã
>
ãã®éãã§ããããŸãã質åã®ä»æ¹ãæªãã£ãã§ãã
y=5g''(x)/g(x)
z=kããïŒäœããkãã¯ãïŒã以å€ïŒ
ãšããŸãã
y=ïœ
ã®é¢ä¿ãæç«ããŸããæŽã«
ïŒyã«äœããã®äœçšããããŠãé«éã®åŸ®åæ¹çšåŒã«ããïŒ
ïŒ........
ïŒïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒ
ïŒïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒïŒyïŒïœ
ã®é¢ä¿ãæç«ããããïŒyã«äœããã®äœçšããããŠãé«éã®åŸ®åæ¹çšåŒã«ããïŒ
åŒã¯ãç°¡åã«åŸãããã§ããããïŒ
äŸãã°ãïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒã¯ã ïœâã§ã¯
<bhfhhj$dsi$1...@bluegill.lbm.go.jp>ã®èšäºã«ãããŠ
to...@lbm.go.jpããã¯æžããŸããã
>> æãå²åŠçã§åçãåä»ãªã質åïŒãã
>> 眮ããŠããŒãã«ãªã£ãŠããããªã®ã§ã
>> ã¡ãã£ãšèããŠã¿ãŸãã
(ç¥)
>> In article <200208...@a.ne.jp> te...@anet.ne.jp writes:
>> >> 質åïŒïŒ
>> >> ããããªããExp^xã¯ã埮åããŠãç©åããŠããã®ãŸãŸãªã®ã§ããããïŒãã®æå³
>> >> ãããïŒïŒïŒã¯ãã©ã®ããã«è§£éããã°ããã®ã§ããããïŒ
(ç¥)
>> ãåªä¹ã®æŠå¿µã®æ¡åŒµããšã埮åããŠãç©åããŠããã®ãŸãŸããšã
>> äžèŽããã®ãåœç¶ã ãšæããããããªèª¬æã£ãŠäœããããŸãããïŒ
f(x) ã®ä»£ããã« x ãé¢æ£çãªæ°å Ax ã«ã€ããŠã
埮åã以äžã®ããã«è¿äŒŒçã«å®çŸ©ããŸã
ã»åŸ®å A' xãšã¯ãx ã +1 ãããšãã« A x+1 ã Ax ã«æ¯ã¹ãŠ ãã©ãã ãå¢ãããã
ã瀺ãããã®ã§ãã ; A x+1 = A x + A'x
次㫠A'x = A x ãšãã埮åæ¹çšåŒãäžã®å®çŸ©ã«ä»£å
¥ãããš
Ax+1 = 2Ax ; ã€ãŸããæ°åã®æ¬¡ã®é
ã§ã¯å€ãäºåã«ãªã
ãã®ãããªæ°å Ax ãšã¯
Ax = 2^x
ã®ãããªåªä¹ã§ããããšãã説æã¯ã§ãããã§ãã
ïŒãã¡ãããäžã®ã2ãã¯æ¬åœã¯ãeãã§ãããããã¯è¿äŒŒãªã®ã§ã
ãŸãããã®æç¹ã§è§£g(x)ã¯ç¢ºå®ããŠãŸããããããªãæ¡ä»¶ä»ã
> ïŒyã«äœããã®äœçšããããŠãé«éã®åŸ®åæ¹çšåŒã«ããïŒ
>
> ïŒ........
>
> ïŒïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒ
>
> ïŒïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒïŒyïŒïœ
ããã¯yïŒïœãšççŸãã解ã¯åŸãããŸãããäžã®ããã«ããããšã¯
ãšãããªããã
ïŒïŒãyïŒïœ
ïŒïŒãïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒïŒïœ
ïŒïŒãïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒïŒïœ
ã»
ã»
ãšãã£ãç°ãªã埮åæ¹çšåŒãä»å ããŠããããšã«ä»ãªããŸããã
ããããé£ç«ããŠè§£ããïœïŒïœïŒã¯é«ã
yïŒïœïŒïœïŒïŒïŒïœã®è§£ã®ä¿æ°ã
å¶çŽãããããããã¯è§£ãªãã«ãªããã®ã©ã¡ããã§ãããã
> äŸãã°ãïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒã¯ã ïœâã§ã¯
>
> ïŒéã«ãªããŸãããïœâïŒyïŒïœããšã¯ãªããªãã®ã§ãé§ç®ã§ãããã
>
> èããããæ¹æ³ãšããŠã¯ãaïœâ+by+c ã®ãa,b,cã«é©åœãªæ°ã代å
¥ããŠã
>
> aïœâ+by+cïŒyïŒïœã
>
> ãæ±ããæ¹æ³ããããããªæ°ãããŸããã§ããããã§ãåŸãããã®ã§ããããïŒ
aïœâ+by+cïŒyïŒïœã
ã§yïŒïœãæç«ããŠãããã§ãããïŒã ã£ããåæã«yâïŒïŒãæç«ããŠããŸããŸãã
ãããš
aïœâ+by+cïŒbïœ+c
ãšãªããŸããããã¯ïœãšçããããã§ããã
bïœ+cïŒïœ
ã§
cïŒïœïŒ1- bïŒ
ãšãªããŸãããšã«ããyïŒïœãæç«ããéãïœã®åŸ®åã¯ãã¹ãŠïŒãšãªã£ãŠããŸããŸããã
èããæå³ã¯ãããŸããã
ç³ãèš³ããããŸããããã¯ãã質åã®ä»æ¹ãæªãã£ãã§ãã
> > y=5g''(x)/g(x)
> >
> > z=kããïŒäœããkãã¯ãïŒã以å€ïŒ
> >
> > ãšããŸãã
> >
> > y=ïœ
> >
> > ã®é¢ä¿ãæç«ããŸããæŽã«
>
> ãŸãããã®æç¹ã§è§£g(x)ã¯ç¢ºå®ããŠãŸããããããªãæ¡ä»¶ä»ã
>
> > ïŒyã«äœããã®äœçšããããŠãé«éã®åŸ®åæ¹çšåŒã«ããïŒ
> >
> > ïŒ........
> >
> > ïŒïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒ
> >
> > ïŒïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒïŒyïŒïœ
ïŒyã«äœããã®äœçšããããŠãïŒéã®åŸ®åæ¹çšåŒã«ããïŒã¯ãåŸãããŸããã
5(2g'(x)g''(x)+g(x)g'''(x))^2/(g'(x)^2+2g(x)g''(x))^2ããããã----ïŒåŒïŒïŒ
ã§ããã
5(2g'(x)g''(x)+g(x)g'''(x))^2/(g'(x)^2+2g(x)g''(x))^2ïŒ5g''(x)/g(x)ïŒk
ãæºããããã®è§£ïŒã®ïŒã€ïŒã¯ã
E^((Sqrt[k]*x)/Sqrt[5])
ã§ãããæšæ©ãè©Šè¡é¯èª€ïŒãã¡ããã¡ãïŒããŠãããå¶ç¶ãåŸãããã®ã§ããã
äžè¬çãªæ±ãæ¹ãããããŸããã
ããã§ã質åã§ãããåŒïŒïŒïŒã¯ã5g''(x)/g(x)ïŒkããããç°¡åã«åŸãããã®ã§
ããããïŒ
ãŸããåŸãããå ŽåãåŒïŒïŒïŒã®æ±ãæ¹ãããæ瀺é ããŸããã幞ãã§ãã
ããŒãã
æ¬è³ªçã«ã¯ç§ããéšããããããªæ°åã«ãªããåŒå€åœ¢ãšåããªãã§ããã©ãã
ãã ãçŽæã§ã€ã¡ãŒãžãæãããã«ç¶æ³ãå€ããŠããåã ã
説åŸåã¯åŒ·ãã®ããªïŒ
ïŒããã«ããŠããé¢æ£åãããšããã¢å®æ°ïœ
ãïŒã«ãªã£ãŠããŸã
ïŒãšããã®ã¯ããŠãã«ãªããŠãŸããã
æžç° åïŒ æ»è³çç«çµç¶æ¹åç©é€š
to...@lbm.go.jp
ãŸãããã®ãäœããã®ãæäœããã¡ããšç€ºããŠãã ããã
ã§ãªããã°
> 5(2g'(x)g''(x)+g(x)g'''(x))^2/(g'(x)^2+2g(x)g''(x))^2ããããã----ïŒåŒïŒïŒ
>
> ã§ããã
>
> 5(2g'(x)g''(x)+g(x)g'''(x))^2/(g'(x)^2+2g(x)g''(x))^2ïŒ5g''(x)/g(x)ïŒk
>
> ãæºããããã®è§£ïŒã®ïŒã€ïŒã¯ã
ã®æ£åœæ§ã¯èšããŸããã
> E^((Sqrt[k]*x)/Sqrt[5])
>
> ã§ãããæšæ©ãè©Šè¡é¯èª€ïŒãã¡ããã¡ãïŒããŠãããå¶ç¶ãåŸãããã®ã§ããã
ãã¡ããã¡ããããããæå³ããããŸããããã¡ããã¡ããããªãïœã«ã€ããŠã
æäœããªãã¡ããããŸãããã
çµå±ãïœïŒïœããããåŒã£ãŠããã®è§£ä»¥äžã®è§£ã¯åŸãããŸããã
ããã¯åŸ®åæ¹çšåŒã解ããŠããšè¯ãåºãŠãããã¿ãŒã³ã§ãã
ã€ãŸãã
(g'/g)'=g''/g-(g'/g)^2
ãšãªãããã§ããg'/g=y(x)ïŒg''/g=f(x)ãšãããšäžã®åŒã¯
y'(x)+y(x)^2=f(x)ãã»ã»ã»ïŒïŒïŒ
ãšãªããŸããããã¯RiccatiïŒãªã«ããïŒã®åŸ®åæ¹çšåŒãšãã£ãŠ
ç©çãã£ãŠããšããããªãšããã«é¡ãåºããŠããŸãã
ãã®æ¹çšåŒã¯f(x)ã«ãã£ãŠæ§ã
ãªè§£ãååšããŠæãæåãªã®ã¯
f(x)=1ã®æã§ç¹è§£ã¯
y(x)=tanh(x)
ãšãªããŸããRiccatiã®åŸ®åæ¹çšåŒã¯ïŒã€ã®ç¹è§£äžãããããšå®¹æã«
äžè¬è§£ãæ§æããããšãã§ããŸãããã®ãšãã®ç¹è§£ãy1(x)ãšãããš
y(x)=y1(x)+1/Ο(x)
ãïŒïŒïŒã®äžè¬è§£ã«ãªããŸããããã§ÎŸ(x)ã¯äžã®åŒãïŒïŒïŒãžä»£å
¥ãã
ããšã§ÎŸ(x)ã«é¢ããïŒéã®ç·åœ¢åŸ®åæ¹çšåŒãåŸãããŸãã®ã§ããã
解ãããšã§åŸãããŸãã
ãã®ä»ã®f(x)ã«ã€ããŠã¯ïœã®ããä¹ã§ç¹å¥ãªå Žå以å€ã¯äžè¬ã«è§£æ³
ãããããã§ã¯ãããŸããã
ãããäžžå±±ããã®çåã«ã©ãé¢é£ãããã¯ããã¡ãã£ãšèããŠã¿ãŸãã
ã§ã¯ã
>
> çµå±ãïœïŒïœããããåŒã£ãŠããã®è§£ä»¥äžã®è§£ã¯åŸãããŸããã
>
ããŒãèããŸããããããã§ããã
æåãããæå³ã®ãªãããšããèããŠããããã§ãã
ãŸããå¥ã®ã¢ã€ãã¢ãèããŸãããçæ§ããéšããããããŸããã
ä»åŸãšãããããããé¡ãããããŸãã
é¢æ°ãç¡éçŽæ°ã§è¡šç€ºããããšãèªããã°ã
f'(x) = f(x) ã〠f(0)=1
ïŒåŸ®åããŠããã®ãŸãŸïŒãæºããé¢æ° f(x) ãš
g(x) g(y) = g(x+y) ã〠g(1) = e = 2.71828...
ïŒåªä¹ã®æ¡åŒµïŒãæºããé¢æ° g(x) ãäžèŽããããšã¯çŽ æŽã«ç€ºããŸããâŠã
T.G.