ãšãã£ã話ã¯åŸããæŠå¿µãæŽçããŠã§ãããã®ã§, éšåéåäºã
ã®è©±ã, 宿° x ã«å¯ŸããŠå¯Ÿå¿ãã宿° y ã(äœããã)äžã€å®ãŸ
ããšããããšã圢åŒåããŠããã ãã®ããšã . x ãç¬ç«å€æ°ãšåŒ
ã³, y ãåŸå±å€æ°ãšåŒã¶, y 㯠x ãå€ããã°ããã«åŸã£ãŠå€ãã,
ãã®ããšã颿°ãšåŒã¶, ãããå
ã
ã®èãæ¹.
ããã, ãã®é¢æ°ãäžã€ã®æ°åŠç察象ãšã, ååãä»ããŠåŒãŒã
ãšãããªã, x ãšã y ãšãèšã£ãŠããã ãã§ã¯è¶³ããªã.
x ã«åŸã£ãŠå®ãŸã y ã®èšç®ã®ä»æ¹ããæžããããã®ã§ããã°,
ãããæžããŠããã ãã§é¢æ°ãå®çŸ©ãããŠãããšæãã.
y = x^2 + 2 x + 3
ã颿°ã§ãããšããã®ã¯ãã®æå³ã«ãããŠã§ãã. 圢åŒçã«åå
ã®èšèã«ããããªã, y ãèšç®ãããåŒãã«ãŸãååãä»ãã.
f(x) = x^2 + 2 x + 3
ãšãããŠ, å³èŸºã®ååã "f" ãšãã. ãã®å Žå "(x)" ãä»ããŠ
ããã®ã¯ x ã«ã€ããŠã®åŒã§ããããšã®ç¢ºèªã®çºã . ãã®åŒã®åå
ã颿°ã®ååã«ãæµçšããã. æ¬åœã¯,
Ï: R â R (TeX ã ãš \to)
ãšãã宿°ãã宿°ãžã®ååã, Ïã«ãã£ãŠ x ã« y ã察å¿ãã,
ã€ãŸã,
Ï: Râx |â yâR (TeX ã ãš \mapsto)
ãšãããšã
y = f(x) (=x^2 + 2 x + 3)
ã§ãããã®ãšãã, ãšããèš³ã ã, ããã
f: R â R
ãšãæžãããšã«ãã. äžã
éãæåã䜿ãã®ã¯é¢åã ã, Ï ãš f
ãšã®ç
§å¿ãèŠããŠããã®ã倧å€ã . éã« Ï ã«ãã£ãŠ x ã«å¯Ÿå¿
ããå
ã®ããšã Ï(x) ãšãã¯ãæžãã®ã§, ããããæµçšãã§ãã
ãšããæèŠã¯ã»ãšãã©ãªããã®ããç¥ããªã. sin, cos, exp, ãš
ãã£ãååã®é¢æ°ã«ãããŠ, sin(x) ãšããã®ãåŒã, 颿°ã®å€ã®
衚瀺ã, ãšãã質åã«æå³ã¯ããã ããã. ã§, åã³,
y = sin(x) ã¯é¢æ°ã
ãšããããšã«ããªã. æŽã«ã¯
sin(x) ã¯é¢æ°ã
ãšããããšã«ããªã. ããã
sin: R â R
ãšæžããªããšé¢æ°ã§ã¯ãªã, ãšãã£ãŠã¿ãŠãå§ãŸããªã. ãã£ãšã
f(x) = x^2 + 2 x + 3 ã¯é¢æ°ã
ã¯ãŸã ãã, ãã£ãšçç¥ããŠ
x^2 + 2 x + 3 ã¯é¢æ°ã
ãšããããšã«ã¯å¿ççæµæãããã®ã ããã©.
ãšããã§, x ã«å¯Ÿå¿ãã y ã x èªèº«ãšãã, ã€ãŸã,
y = x
ãšããå Žåã«å¯Ÿå¿ãã颿°ãã©ãåŒã¶ã¹ãã. çŽæ¥é¢æ°ã«ååã
ä»ãããªã, ããããæçåå(identity)ããšåŒãã§, èšå·ãšããŠ
id: R â R ãªã ι: R â R
ãæ¡çšã,
id(x) = x ãªã ι(x) = x
ãšæžãããããããšã«ãªã. åŒã«ååãã€ããŠ
g(x) = x
ãšãããŠ, g ã§æçååãããããããšã«ããŸã, ãšããã®ã¯,
g ã®ãããªäžè¬çãªæåã§ç¹å¥ãªãã®ã衚ããŠããããšãåžžã«
æèããŠããªããšãããªãã®ã§, æå¿ããªã.
ãããªãã究極ã®è¡šç€ºæ³ã, æå "g" ã®ä»£ããã« "x" ããèªäœ
ã䜿ãã®ã¯ã©ãã.
x^2 + 2 x + 3 ãšãã颿°
ãªãèšãæ¹ã«è³æããªã人ã«å¯ŸããŠã,
x ãšãã颿°
ãªãèšãæ¹ã¯,
x(x) = x
ãšãããŠ, äžçªå·Šã«æžãã "x" ãçšããŠ
x: R â R
ãå®çŸ©ããŠã x ãšãã颿°ããšåŒãã§ããã®ã , ãšèšãã°, ãã£ãšçŽåŸ
âŠâŠããªãã.
# x^2 + 2 x + 3 ãšããã®ãåŒã®ååã«ã,
# (x^2 + 2 x + 3)(x) = x^2 + 2 x + 3
# ãšããããšã«ãã, ãšããã®ã¯ã©ãã ãã.
# # ã¡ãããšæ¬åŒ§ãã€ãããš (x)(x) = x ã, ã¯ããèš³åããã.
# # # å¥ã®çš®é¡ã®æ¬åŒ§ã䜿ã£ãŠ <x>(x) = x ãšã
# # # <x^2 + 2 x + 3>(x) = x^2 + 2 x + 3 ãšãæžãããšã«æ±ºãã
# # # å³å¯äž»çŸ©è
ãããããç¥ããªã.
# # # # ã§, åŒã®ååãšé¢æ°ã®ååãèšå·ã§åºå¥ããè¶
å³å¯äž»çŸ©è
ã.
ããŠå
ã«æ»ã£ãŠ, x ã«å¯Ÿã㊠y ã察å¿ãã仿¹ãäœãããå®ãŸã£ãŠ
ãã, ãšããç¶æ
ã«ã€ããŠã®æé»ã®äºè§£ããããªã,
y ã¯é¢æ°ã§ã
ãšããããšã«ããªã. x ã«åŸå±ãã, ãšããããšãã¯ã£ãããããçºã«
y = y(x)
ãšæžãããããããç¥ããªã. ãããããã¯é¢æ°ã®ååã "y" ã§ãã
ãšããã®ãšã¯éã. ãããŸã§ã颿°ã¯ãç¡åãã®ãŸãŸã .
çµå±ã®ãšããäœãèšãããã£ãããšãããš, ã y ãšãã颿°ããš
ã x ãšãã颿°ãã§ã¯ãçç¥ããããŠããéšåãéããšããããšã
èªèã§ããªããããªäººç©ãçžæã«ããã®ãã©ãããšæãã, çžæã«
ãããªã, "x = x" ãªã©ãšããåŒãç¡é²åã«æžãããããã«, ãããŠ
"x(x) = x" äœã®ããšã工倫ããŠã¯ã©ãã, ãšããããšã .
--
å
Tsukamoto Chiaki wrote:
> çµå±ã®ãšããäœãèšãããã£ãããšãããš, ã y ãšãã颿°ããš
> ã x ãšãã颿°ãã§ã¯ãçç¥ããããŠããéšåãéããšããããšã
> èªèã§ããªããããªäººç©ãçžæã«ããã®ãã©ãããšæãã, çžæã«
> ãããªã, "x = x" ãªã©ãšããåŒãç¡é²åã«æžãããããã«, ãããŠ
> "x(x) = x" äœã®ããšã工倫ããŠã¯ã©ãã, ãšããããšã .
ãããæžããŠã¿ãããããã®ã§ãããx = x(t) ãšã®é¢ä¿ãããã
ã ãã©ããããããŸãã ãšããã®ã§ããã¡ãããŸããã
x = id(x) ã¯åäŸ¿ã§æžããããšæã£ãŠå¿ããŠãã
ããã«ããŠãæç颿°ãè¡šãæšæºèšæ³ããªãïŒå®çããŠããªãïŒ
ãšããã®ã¯äœããšäžäŸ¿ã§ããã
ã# Common Lisp ã ãš identityïŒããŽãã€ãªã
ãŸãã工倫ããããŠã¿ããšããã§ãã䞡蟺㫠x ãããã®ã¯ã©ãããããã ã
ãããã«èšãããŠåãããšã ãšã¯æããŸããã
ã# ããããç§ã¯ãx=x ãšã¯æžããªãããšã«ãããããšèšã£ãã¯ããªã®ã«ã
ã# ãããæ¶ããŠæ²è§£èª€åŒçšãããããšã«ãŸã§ã®ãé²åãã¯äžå¯èœã
> # x^2 + 2 x + 3 ãšããã®ãåŒã®ååã«ã,
> # (x^2 + 2 x + 3)(x) = x^2 + 2 x + 3
> # ãšããããšã«ãã, ãšããã®ã¯ã©ãã ãã.
> # # ã¡ãããšæ¬åŒ§ãã€ãããš (x)(x) = x ã, ã¯ããèš³åããã.
> # # # å¥ã®çš®é¡ã®æ¬åŒ§ã䜿ã£ãŠ <x>(x) = x ãšã
> # # # <x^2 + 2 x + 3>(x) = x^2 + 2 x + 3 ãšãæžãããšã«æ±ºãã
> # # # å³å¯äž»çŸ©è
ãããããç¥ããªã.
> # # # # ã§, åŒã®ååãšé¢æ°ã®ååãèšå·ã§åºå¥ããè¶
å³å¯äž»çŸ©è
ã.
åºç€è«ãšãèšç®æ©ç§åŠã ãšÎ»-èšæ³ã䜿ããŸããã
ïŒå¹³è³ïŒ
ãšããã®ãéçšãããšæãã®ããç¡é²åã.
> åºç€è«ãšãèšç®æ©ç§åŠã ãšÎ»-èšæ³ã䜿ããŸããã
ãããã¯ãæçŸ©ããçºèšã§ãã.
--
å
> ããã«ããŠãæç颿°ãè¡šãæšæºèšæ³ããªãïŒå®çããŠããªãïŒ
> ãšããã®ã¯äœããšäžäŸ¿ã§ããã
å®çããŠããªãã®ããªã 1 ãããã¯ãid ã ãšæããã©ã
> åºç€è«ãšãèšç®æ©ç§åŠã ãšÎ»-èšæ³ã䜿ããŸããã
Ïâ¡ ãªããŠã®ããã£ãããªã
æ¡ è±æ²»ïŒ (æ ª)暪æµã€ã³ããªãžã§ã³ã¹ ( kat...@hamaint.co.jp )
éæãã®éæãã«ããéæããªææ¡ã ãªãããœ(ã)ã
Tsukamoto Chiaki wrote:
> ... x ã«åŸå±ãã, ãšããããšãã¯ã£ãããããçºã«
>
> y = y(x)
>
> ãšæžãããããããç¥ããªã. ãããããã¯é¢æ°ã®ååã "y" ã§ãã
> ãšããã®ãšã¯éã. ãããŸã§ã颿°ã¯ãç¡åãã®ãŸãŸã .
>
> çµå±ã®ãšããäœãèšãããã£ãããšãããš, ã y ãšãã颿°ããš
> ã x ãšãã颿°ãã§ã¯ãçç¥ããããŠããéšåãéããšããããšã
> èªèã§ããªããããªäººç©ãçžæã«ããã®ãã©ãããšæãã, çžæã«
> ãããªã, "x = x" ãªã©ãšããåŒãç¡é²åã«æžãããããã«, ãããŠ
> "x(x) = x" äœã®ããšã工倫ããŠã¯ã©ãã, ãšããããšã .
x(x) ã䜿ããªãã£ãã®ã¯ã¡ãã£ãšå¿ççãªæµææãåããŠããŠã
æ°åŠæµã® y=y(x) ããã¯ãèšç®æ©å±ççºæ³ã®ã»ããåã£ãŠããŸã£ã
ãšãã£ããšãããããã
ïŒã€ã«ã¯ã颿°ïŒåïŒã¯åºæåè©ããšããã®ããããã
æ°ç颿°ïŒãã³ãªèšèã ïŒã§ã¯ãªãã圢åŒçäœç³»ã®é¢æ°ãšããŠã¯ã
x(x) ã¯é¢æ° x ã«èªèº«ãé©çšãããšããæå³åãã§åºãŠãããã§ããã
ïŒäžåç¹ããã°ã©ã ãšãã§ïŒ
ããšããè§£ææŠè«ãã§ã¯ãx'=1 ã ããããšæžãããŠãããã§ããã
ããããå¯ããã«ã
ããx = x âãdx = x' Îx â dx = Îx
ãšåãåãã®ãäžçªçŽ çŽãããªãã®ããªãã
é¢é£ããŠæ¡ããã®æžãããïŒ
>> ããã«ããŠãæç颿°ãè¡šãæšæºèšæ³ããªãïŒå®çããŠããªãïŒ
>> ãšããã®ã¯äœããšäžäŸ¿ã§ããã
>
> å®çããŠããªãã®ããªã 1 ãããã¯ãid ã ãšæããã©
ãå®çããŠããªãããšããã®ã¯å¥ã«ã¯ã£ããããã€ã¡ãŒãžã
æã£ãŠã®è©±ã§ã¯ãããŸããããäŸãã°ïŒ
ãã»ãx' = 1ãã§ã¯ãªãããid' = 1ããã(id(x))' = 1ããªã©ãš
ããæžãããã¯ããªãã
ãã»é¢æ°ç©ºéã®è©±ãªã©ã§æã¡åºãå Žåããid ã¯æç颿°ããšæããã«
ãã䜿ã£ããã¯ããªãã
ãšãã£ããããªããšã§ãã
ãã£ãšãåè
ã®å Žåãæç颿°ãç¹å¥ãªé¢æ°ãšèããããã¯ã
å€é
åŒã®äžçš®ãšããŠã®æ±ããåã£ãŠããããã§ã¯ããã§ããããã
ãããšé¢æ°åæã®å Žåãªã©ã¯ 1 ã§ããã§ããããã
è§£æã§ 1(x) ãªã©ãšãããšå®æ°é¢æ°ãšééããããã
ã¹ããã颿°ãããæžãããããããšãããããªã
ããã«ããŠãïŒ
I wrote:
> ãŸãã工倫ããããŠã¿ããšããã§ãã䞡蟺㫠x ãããã®ã¯ã©ãããããã ã
> ãããã«èšãããŠåãããšã ãšã¯æããŸããã
<800c7853.04041...@posting.google.com> ãªããèŠãŠã
ããããæãã¯ããŸãããã
ãã£ãšãããèªäœã¯ãããæ£åå¯Ÿã®æ¹åãèšã£ãŠããããã ãã©ã
ãã®åŸ¡ä»ãx ãå·ŠèŸºã«æã£ãŠããã®ããã»ã©ã€ã€ã¿ããã
ïŒå¹³è³ïŒ
??????????????????
ãx(x)ïŒx ã¯ãy(y)ïŒy ã z(z)ïŒz ãšã¯å
šãå¥ã®åœæ°ã衚ããããš
èšãããã®ãïŒïŒïŒã
ãããã«ã¿ã¬ãïŒïŒïŒ
ã§ãâåœæ°âxïŒx ã®ã°ã©ããïœè»žãã®ãã®ã£ãŠã¯ã±ããïŒïŒïŒ
ãã# ãŸãã«ãã銬鹿䞞åºããã ãªãïŒçç¬ïŒå²ç¬