Google Groups no longer supports new Usenet posts or subscriptions. Historical content remains viewable.
Dismiss

gcc 2.1 on pdp-11

11 views
Skip to first unread message

Michael Gschwind - EECS

unread,
Mar 27, 1992, 2:22:48 PM3/27/92
to

Here's everything you need to run gcc 2.1 as cross compiler to produce
pdp-11 code. The pdplib.s supplies 3 functions that are used by the
code generator, so link the generated code with this lib.

Just unpack the archive in a gcc 2.1 distribution and you should be
able to compile. Integration with assemblers/linkers etc. is
non-existent, so you have to compile code for the pdp with the -S
option and carry the generated assembly source over to your pdp.

mike


# This is a shell archive. Remove anything before this line,
# then unpack it by saving it in a file and typing "sh file".
#
# Wrapped by Michael Gschwind on Fri Mar 27 11:37:04 1992
#
# This archive contains:
# pdplib.s configure config.sub config/pdp.c
# config/pdp.h config/xm-pdp.h config/pdp.md
#

LANG=""; export LANG
PATH=/bin:/usr/bin:$PATH; export PATH

echo x - pdplib.s
cat >pdplib.s <<'@EOF'
gcc$compiled:
.text

.align 2
.globl ___cmpsi
___cmpsi:

/* function prologue __cmpsi*/
/* end of prologue */

cmp R0,R2
blt L_16
ble L_10
mov $1, R0
rts pc
L_10:
cmp R1,R3
bhis L_12
L_16:
mov $-1, R0
rts pc
L_12:
mov $1, R0
cmp R1,R3
bhi L_15
clr R0
L_15:

/*function epilogue */
rts pc
/* end of epilogue*/


.align 2
.globl ___ucmpsi
___ucmpsi:

/* function prologue __ucmpsi*/
/* end of prologue */

cmp R0,R2
blo L_32
blos L_26
mov $2, R0
rts pc
L_26:
cmp R1,R3
bhis L_28
L_32:
clr R0
rts pc
L_28:
mov $2, R0
cmp R1,R3
bhi L_31
mov $1, R0
L_31:

/*function epilogue */
rts pc
/* end of epilogue*/


.align 2
.globl ___tstsi
___tstsi:

/* function prologue __tstsi*/
/* end of prologue */

tst R0
bge L_39
mov $-1, R0
rts pc
L_39:
tst R0
ble L_40
mov $1, R0
rts pc
L_40:
tst R1
bne L_43
clr R0
rts pc
L_43:
mov $1, R0
rts pc

@EOF

chmod 644 pdplib.s

echo x - configure
sed 's/^@//' >configure <<'@EOF'
#!/bin/sh
# Configuration script for GNU CC
# Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.

#This file is part of GNU CC.

#GNU CC is free software; you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation; either version 2, or (at your option)
#any later version.

#GNU CC is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.

#You should have received a copy of the GNU General Public License
#along with GNU CC; see the file COPYING. If not, write to
#the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.

#
# Shell script to create proper links to machine-dependent files in
# preparation for compiling gcc.
#
# Usage: configure [--srcdir=DIR] [--host=HOST] [--gas] [--nfp] TARGET
#
# If configure succeeds, it leaves its status in config.status.
# If configure fails after disturbing the status quo,
# config.status is removed.
#

progname=$0

# Default --srcdir to the directory where the script is found,
# if a directory was specified.
srcdir=`echo $0 | sed 's|/[^/]*$||'`
if [ x$srcdir = x$0 ]
then
srcdir=
fi

remove=rm
hard_link=ln
symbolic_link='ln -s'

# Record all the arguments, to write them in config.status.
arguments=$*

#for Test
#remove="echo rm"
#hard_link="echo ln"
#symbolic_link="echo ln -s"

for arg in $*;
do
# Handle -srcdir, etc, with space between it and argument.
if [ x$next_srcdir = xyes ]
then srcdir=$arg; next_srcdir=;
else if [ x$next_objdir = xyes ]
then objdir=$arg; next_objdir=;
# Handle -host, etc, with space between it and argument.
else if [ x$next_host = xyes ]
then host=$arg; next_host=;
else if [ x$next_target = xyes ]
then target=$arg; next_target=;
else
case $arg in
-srcdir=* | --srcdir=* | --srcdi=* | --srcd=* | --src=* | --sr=* | --s=*)
srcdir=`echo $arg | sed 's/-*s[a-z]*=//'`
;;
-srcdir | --srcdir | --srcdi | --srcd | --src | --sr | --s)
next_srcdir=yes
;;
-objdir=* | --objdir=* | --objdi=* | --objd=* | --obj=* | --ob=* | --o=*)
objdir=`echo $arg | sed 's/-*o[a-z]*=//'`
;;
-objdir | --objdir | --objdi | --objd | --obj | --ob | --o)
next_objdir=yes
;;
-host | --host | --hos | --ho | --h)
next_host=yes
;;
-host=* | --host=* | --hos=* | --ho=* | --h=*)
host=`echo $arg | sed 's/-*h[a-z]*=//'`
;;
-target | --target | --targe | --targ | --tar | --ta | --t)
next_target=yes
;;
-target=* | --target=* | --targe=* | --targ=* | --tar=* | --ta=* | --t=*)
target=`echo $arg | sed 's/-*t[a-z]*=//'`
;;
-gas | --gas | --ga | --g)
gas=yes
;;
-nfp | --nfp | --nf | --n)
nfp=yes
;;
*)
# Allow configure HOST TARGET
if [ x$host = x ]
then
host=$target
fi
target=$arg
;;
esac
fi; fi; fi; fi
done

# Find the source files, if location was not specified.
if [ x$srcdir = x ]
then
srcdirdefaulted=1
srcdir=.
if [ ! -r tree.c ]
then
srcdir=..
fi
fi

if [ ! -r ${srcdir}/tree.c ]
then
if [ x$srcdirdefaulted = x ]
then
echo "$progname: Can't find compiler sources in \`${srcdir}'." 1>&2
else
echo "$progname: Can't find compiler sources in \`.' or \`..'." 1>&2
fi
exit 1
fi

# If the directory for object files was specified,
# go to that directory and do the configuring there.
# Replace srcdir with an absolute file name
# so that changing working directory does not invalidate it.
if [ x$objdir = x ]
then true
else
srcdir = `(cd $srcdir; pwd)`
cd $objdir
fi

# Complain if an arg is missing
if [ x$target = x ]
then
echo "No target specified."
echo "Usage: $progname [--srcdir=DIR] [--host=HOST] [--gas] [--nfp] TARGET"
echo -n "Where HOST and TARGET are something like "
echo "\`vax', \`sun3', \`encore', etc."
if [ -r config.status ]
then
cat config.status
fi
exit 1
fi

# Default other arg
if [ x$host = x ]
then
host=$target
fi

# Decode the host machine, then the target machine.
# For the host machine, we save the xm_file variable as host_xm_file;
# then we decode the target machine and forget everything else
# that came from the host machine.
for machine in $host $target; do

# Validate the spec, and canonicalize it.
machine=`$srcdir/config.sub $machine` || exit 1

cpu_type=
xm_file=
tm_file=
xmake_file=
tmake_file=

case $machine in
# Support site-specific machine types.
*local*)
cpu_type=$machine
xm_file=xm-$machine.h
tm_file=$machine.h
if [ -f $srcdir/config/x-$machine ] ; \
then xmake_file=x-$machine; \
else true; \
fi
if [ -f $srcdir/config/t-$machine ] ; \
then tmake_file=t-$machine; \
else true; \
fi
;;
pdp*)
tm_file=pdp.h
;;
vax-*-bsd*) # vaxen running BSD
tm_file=vax.h
;;
vax-*-ultrix*) # vaxen running ultrix
tm_file=ultrix.h
;;
vax-*-vms*) # vaxen running VMS
xm_file=xm-vms.h
tm_file=vms.h
;;
vax-*-sysv*) # vaxen running system V
xm_file=xm-vaxv.h
tm_file=vaxv.h
;;
# This hasn't been upgraded to GCC 2.
# tahoe-harris-*) # Harris tahoe, using COFF.
# tm_file=harris.h
# ;;
# tahoe-*-bsd*) # tahoe running BSD
# xm_file=xm-tahoe.h
# tm_file=tahoe.h
# ;;
i386-osfrose*) # 386 using OSF/rose
tm_file=i386rose.h
xmake_file=x-i386rose
tmake_file=t-i386rose
;;
i386-sequent-bsd*) # 80386 from Sequent
xm_file=xm-i386.h
tm_file=seq386.h
;;
i386-*-mach*)
xm_file=xm-i386.h
tm_file=i386mach.h
xmake_file=x-i386mach
;;
i386-*-sco*) # 80386 running SCO system
xm_file=xm-i386v.h
tm_file=i386sco.h
xmake_file=x-i386sco
tmake_file=t-i386sco
;;
i386-*-isc*) # 80386 running ISC system
xm_file=xm-i386v.h
tm_file=i386isc.h
xmake_file=x-i386isc
;;
i386-ibm-aix*) # IBM PS/2 running AIX
tm_file=aix386.h
xm_file=xm-aix386.h
xmake_file=x-aix386
;;
i386-sun-sunos*) # Sun i386 roadrunner
xm_file=xm-i386sun.h
tm_file=i386sun.h
;;
i386-*-sysv4*) # Intel 80386's running system V.4
xm_file=xm-i38v4.h
xmake_file=x-i386v4
tm_file=i386v4.h
tmake_file=t-svr4
;;
i386-*-sysv*) # Intel 80386's running system V
xm_file=xm-i386v.h
xmake_file=x-i386v
tmake_file=t-svr3
if [ x$gas = xyes ]
then
tm_file=i386gas.h
else
tm_file=i386v.h
fi
;;
i860-*-sysv3*)
xm_file=xm-i86v3.h
xmake_file=x-i860v3
tm_file=i860v3.h
tmake_file=t-svr3
;;
i860-*-sysv4*)
xm_file=xm-i86v4.h
xmake_file=x-i860v4
tm_file=i860v4.h
tmake_file=t-svr4
;;
i860-alliant-*) # Alliant FX/2800
xm_file=xm-i86v4.h
xmake_file=x-i860v4
tm_file=fx2800.h
tmake_file=t-svr4
;;
i860-*-bsd*)
if [ x$gas = xyes ]
then
tm_file=i860bg.h
else
tm_file=i860b.h
fi
;;
sparc-unicom-*)
tm_file=pbd.h
xm_file=xm-pbd.h
;;
sparc-*-sunos4*)
tm_file=sparc.h
;;
sparc-*-sunos3*)
tm_file=sun4o3.h
;;
m68k-tti-*)
tm_file=tti68k.h
;;
# This has not been updated in a while. I don't think it will be.
# m...@tticda.tti.com might be able to say more. If it does not get
# updated, the newpbb.h file can be yanked, as it is not for a
# general machine. Mike Stump <m...@csun.edu>.
# m68k-tti2-*)
# tm_file=newpbb.h
# ;;
m68k-*-amix*) # Commodore variant of V.4.
tm_file=amix.h
xm_file=xm-amix.h
xmake_file=x-amix
tmake_file=t-svr4
;;
m68k-*-sysv4*) # Motorola m68k's running system V.4
tm_file=m68kv4.h
xm_file=xm-m68kv4.h
xmake_file=x-m68kv4
tmake_file=t-svr4
;;
m68k-next-*)
tm_file=next.h
out_file=next.c
xm_file=xm-next.h
;;
m68k-sun-sunos3*)
if [ x$nfp = xyes ]
then
tm_file=sun3n3.h
else
tm_file=sun3o3.h
fi
;;
m68k-sun-mach*)
tm_file=sun3mach.h
;;
m68k-sun-sunos4*)
if [ x$nfp = xyes ]
then
tm_file=sun3n.h
else
tm_file=sun3.h
fi
;;
m68k-hp-hpux*) # HP 9000 series 300
xm_file=xm-hp320.h
if [ x$gas = xyes ]
then
xmake_file=x-hp320g
tm_file=hp320g.h
else
xmake_file=x-hp320
tm_file=hp320.h
fi
;;
m68k-hp-bsd*) # HP 9000/3xx running Berkeley Unix
tm_file=hp3bsd.h
;;
m68k-isi-bsd*)
if [ x$nfp = xyes ]
then
tm_file=isi-nfp.h
else
tm_file=isi.h
fi
;;
m68k-sony-bsd*)
xm_file=xm-m68k.h
if [ x$gas = xyes ]
then
tm_file=newsgas.h
else
tm_file=news.h
fi
;;
m68k-altos-sysv*) # Altos 3068
if [ x$gas = xyes ]
then
xm_file=xm-altos3068.h
tm_file=altos3068.h
else
echo "The Altos is supported only with the GNU assembler" 1>&2
exit 1
fi
;;
m68k-motorola-sysv*)
tm_file=mot3300.h
xm_file=xm-mot3300.h
;;
m68k-crds-unos)
xm_file=xm-crds.h
xmake_file=x-crds
tm_file=crds.h
;;
m68k-apollo-*)
xmake_file=x-apollo68
tm_file=apollo68.h
;;
m68k-ncr-sysv*) # NCR Tower 32 SVR3
tm_file=tower-as.h
xm_file=xm-tower.h
;;
m68000-sun-sunos3*)
cpu_type=m68k
tm_file=sun2.h
;;
m68000-sun-sunos4*)
cpu_type=m68k
tm_file=sun2o4.h
;;
m68000-hp-hpux*) # HP 9000 series 300
cpu_type=m68k
xm_file=xm-hp320.h
if [ x$gas = xyes ]
then
xmake_file=x-hp320g
tm_file=hp310g.h
else
xmake_file=x-hp320
tm_file=hp310.h
fi
;;
m68000-hp-bsd*) # HP 9000/200 running BSD
cpu_type=m68k
tm_file=hp2bsd.h
xmake_file=x-hp2bsd
;;
m68000-att-sysv*)
cpu_type=m68k
xm_file=xm-3b1.h
if [ x$gas = xyes ]
then
tm_file=3b1g.h
else
tm_file=3b1.h
fi
;;
m68000-convergent-sysv*)
cpu_type=m68k
xm_file=xm-3b1.h
tm_file=ctix.h
;;
# ns32k-encore-osf*) # Encore with OSF/rose
# tm_file=encrose.h
# xmake_file=x-encrose
# tmake_file=t-encrose
# ;;
# ns32k-sequent-bsd*)
# tm_file=sequent.h
# ;;
# ns32k-encore-bsd*)
# tm_file=encore.h
# ;;
# ns32k-ns-genix*)
# xm_file=xm-genix.h
# xmake_file=x-genix
# tm_file=genix.h
# ;;
# ns32k-merlin-*)
# tm_file=merlin.h
# ;;
m88k-*-luna*)
tm_file=m88kluna.h
xmake_file=x-m88kluna
tmake_file=t-m88kluna
;;
m88k-dg-dgux*)
xmake_file=x-m88kdgux
tmake_file=t-m88k
tm_file=m88kdgux.h
;;
m88k-*-sysv4*)
xmake_file=x-m88kv4
tmake_file=t-m88kv4
tm_file=m88kv4.h
;;
m88k-*-sysv3*)
tm_file=m88kv3.h
xm_file=xm-m88kv3.h
;;
m88k-*)
tm_file=m88k.h
xm_file=xm-m88k.h
;;
# This hasn't been upgraded to GCC 2.
# fx80-alliant-*) # Alliant FX/80
# tm_file=fx80.h
# ;;
arm-*-*) # Acorn RISC machine
tm_file=arm.h
;;
c1-convex-*) # Convex C1
tm_file=convex1.h
cpu_type=convex
;;
c2-convex-*) # Convex C2
tm_file=convex2.h
cpu_type=convex
;;
c32-convex-*)
tm_file=convex32.h # Convex C32xx
cpu_type=convex
;;
c34-convex-*)
tm_file=convex34.h # Convex C34xx
cpu_type=convex
;;
c38-convex-*)
tm_file=convex38.h # Convex C38xx
cpu_type=convex
;;
mips-sgi-sysv*) # Mostly like a MIPS.
tm_file=iris.h
xm_file=xm-iris.h
;;
mips-*-sysv) # MIPS System V.
tm_file=mips-sysv.h
xm_file=xm-umips.h
;;
mips-mips-*) # Default MIPS environment.
tm_file=mips.h
;;
mips-dec-ultrix*) # Decstation.
tm_file=decstatn.h
tmake_file=t-decstatn
;;
mips-dec-osf*) # Decstation with OSF/1.
tm_file=decrose.h
xmake_file=x-decrose
tmake_file=t-decrose
;;
mips-sony-bsd*) # Sony NEWS 3600 or risc/news.
tm_file=mips-news.h
;;
mips-*-bsd*) # BSD 4.3 variant of MIPS system.
tm_file=mips-bsd.h
;;
# This hasn't been upgraded to GCC 2.
# pyramid | pyramid-* | pyramid-*)
# cpu_type=pyr
# tm_file=pyr.h
# ;;
# This hasn't been upgraded to GCC 2.
# tron | tron-*)
# cpu_type=gmicro
# tm_file=gmicro.h
# ;;
a29k-ultra-*)
tm_file=a29k.h
xm_file=xm-a29k-ult.h
;;
a29k-*-bsd*)
tm_file=a29kunix.h
;;
romp-*-bsd)
xm_file=xm-romp.h
tm_file=romp.h
;;
rs6000-*)
xm_file=xm-rs6000.h
tm_file=rs6000.h
;;
hp800-*-* | hp700-*-*)
cpu_type=hp800
xm_file=xm-hp800.h
tm_file=hp800.h
;;
esac

# Default certain vars that apply to both host and target in turn.
if [ x$cpu_type = x ]
then cpu_type=`echo $machine | sed 's/-.*$//'`
fi

# Save data on host machine in vars host_xm_file and host_xmake_file.
if [ x$pass1done = x ]
then
if [ x$xm_file = x ]; then host_xm_file=xm-$cpu_type.h
else host_xm_file=$xm_file
fi
if [ x$xmake_file = x ]
then xmake_file=x-$cpu_type
fi
host_xmake_file=$xmake_file
pass1done=yes
fi
done

# Default the target-machine variables that were not explicitly set.
if [ x$tm_file = x ]
then tm_file=$target.h; fi

if [ x$xm_file = x ]
then xm_file=xm-$cpu_type.h; fi

md_file=${cpu_type}.md

if [ x$out_file = x ]
then out_file=$cpu_type.c; fi

if [ x$tmake_file = x ]
then tmake_file=t-$cpu_type
fi


# Set up the list of links to be made.
# $links is the list of link names, and $files is the list of names to link to.
files="$host_xm_file $tm_file $md_file $out_file $xm_file"
links="config.h tm.h md aux-output.c tconfig.h"

# Make the links.
while [ -n "$files" ]
do
# set file to car of files, files to cdr of files
set $files; file=$1; shift; files=$*
set $links; link=$1; shift; links=$*

if [ ! -r ${srcdir}/config/$file ]
then
echo "$progname: cannot create a link \`$link'," 1>&2
echo "since the file \`config/$file' does not exist." 1>&2
exit 1
fi

$remove -f $link
rm -f config.status
# Make a symlink if possible, otherwise try a hard link
$symbolic_link ${srcdir}/config/$file $link 2>/dev/null || $hard_link ${srcdir}/config/$file $link

if [ ! -r $link ]
then
echo "$progname: unable to link \`$link' to \`${srcdir}/config/$file'." 1>&2
exit 1
fi
echo "Linked \`$link' to \`${srcdir}/config/$file'."
done

# Create Makefile.tem from Makefile.in.
# Make it set VPATH if necessary so that the sources are found.
# Also change its value of srcdir.
# Also create a .gdbinit file which runs the one in srcdir
# and tells GDB to look there for source files.
case $srcdir in
@.)
rm -f Makefile.tem
cp Makefile.in Makefile.tem
chmod +w Makefile.tem
;;
*)
rm -f Makefile.tem
echo "VPATH = ${srcdir}" \
| cat - ${srcdir}/Makefile.in \
| sed "s@^srcdir = \.@srcdir = ${srcdir}@" > Makefile.tem
rm -f .gdbinit
echo "dir ." > .gdbinit
echo "dir ${srcdir}" >> .gdbinit
echo "source ${srcdir}/.gdbinit" >> .gdbinit
;;
esac

# Conditionalize the makefile for this host machine.
if [ -f ${srcdir}/config/${host_xmake_file} ]
then
rm -f Makefile.xx
sed -e "/####/ r ${srcdir}/config/${host_xmake_file}" Makefile.tem > Makefile.xx
echo "Merged ${host_xmake_file}."
rm -f Makefile.tem
mv Makefile.xx Makefile.tem
else
# Say in the makefile that there is no host_xmake_file,
# by using a name which (when interpreted relative to $srcdir/config)
# will duplicate another dependency: $srcdir/Makefile.in.
host_xmake_file=../Makefile.in
fi

# Conditionalize the makefile for this target machine.
if [ -f ${srcdir}/config/${tmake_file} ]
then
rm -f Makefile.xx
sed -e "/####/ r ${srcdir}/config/${tmake_file}" Makefile.tem > Makefile.xx
echo "Merged ${tmake_file}."
rm -f Makefile.tem
mv Makefile.xx Makefile.tem
else
# Say in the makefile that there is no tmake_file,
# by using a name which (when interpreted relative to $srcdir/config)
# will duplicate another dependency: $srcdir/Makefile.in.
tmake_file=../Makefile.in
fi

# Remove all formfeeds, since some Makes get confused by them.
# Also arrange to give the variables `target' and `host_xmake_file'
# and `tmake_file' the same values in the Makefile
# that they have in this script.
rm -f Makefile.xx
sed -e "s/ //" -e "s/^target=.*$/target=${target}/" \
-e "s|^xmake_file=.*$|xmake_file=${host_xmake_file}|" \
-e "s|^tmake_file=.*$|tmake_file=${tmake_file}|" \
Makefile.tem > Makefile.xx
rm -f Makefile.tem
mv Makefile.xx Makefile.tem

# Install Makefile for real, after making final changes.
# Define macro CROSS_COMPILE in compilation if this is a cross-compiler.
# Also use all.cross instead of all.internal, and add cross-make to Makefile.
if [ x$host = x$target ]
then
rm -f Makefile
mv Makefile.tem Makefile
else
rm -f Makefile.xx
sed -e "s/=all.internal$/=all.cross/" Makefile.tem > Makefile.xx
rm -f Makefile
echo "CROSS=-DCROSS_COMPILE" > Makefile
sed -e "/####/ r ${srcdir}/cross-make" Makefile.xx >> Makefile
rm -f Makefile.tem Makefile.xx
fi

echo "Created \`Makefile'."

if [ xx${vint} != xx ]
then
vintmsg =" (vint)"
fi

# Describe the chosen configuration in config.status.
# Make that file a shellscript which will reestablish the same configuration.
echo "#!/bin/sh
# GCC was configured as follows:
${srcdir}/configure" $arguments > config.status
chmod a+x config.status

if [ x$host = x$target ]
then
echo "Links are now set up for target $target."
else
echo "Links are now set up for host $host and target $target."
fi

exit 0
@EOF

chmod 755 configure

echo x - config.sub
cat >config.sub <<'@EOF'
#!/bin/sh
# Configuration validation subroutine script, version 1.0.
# Copyright (C) 1991 Free Software Foundation, Inc.

#This file is free software; you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation; either version 2 of the License, or
#(at your option) any later version.

#This program is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.

#You should have received a copy of the GNU General Public License
#along with this program; if not, write to the Free Software
#Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.


# Configuration subroutine to validate and canonicalize a configuration type.
# Supply the specified configuration type as an argument.
# If it is invalid, we print an error message on stderr and exit with code 1.
# Otherwise, we print the canonical config type on stdout and succeed.

# This file is supposed to be the same for all GNU packages
# and recognize all the CPU types, system types and aliases
# that are meaningful with *any* GNU software.
# Each package is responsible for reporting which valid configurations
# it does not support. The user should be able to distinguish
# a failure to support a valid configuration from a meaningless
# configuration.

# The goal of this file is to map all the various variations of a given
# machine specification into a single specification in the form:
# CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM
# it is wrong to echo any other type of specification

# First pass through any local machine types.
case $1 in
*local*)
echo $1
exit 0
;;
*)
;;
esac

# Separate what the user gave into CPU-COMPANY and OS (if any).
basic_machine=`echo $1 | sed 's/-[^-]*$//'`
if [ $basic_machine != $1 ]
then os=`echo $1 | sed 's/.*-/-/'`
else os=; fi

# Lets recognize common machines as not being OS so that things like
# config.subr decstation-3100 as legal.
case $os in
-dec* | -mips* | -sequent* | -encore* | -pc532* | -sgi* | -sony* | \
-att* | -7300* | -3300* | -delta* | -motorola* | -sun[234]* | \
-unicom* | -ibm* | -next* | -hp | -isi* | -apollo | -altos* | \
-convergent* | -ncr* | -news | -32* | -3600* | -3100* | -osf* | \
-c[123]* | -convex* | -sun | -crds | -omron* | -dg | -ultra | -tti* | \
-harris)
os=
basic_machine=$1
;;
-sco*)
os=-scosysv322
basic_machine=i386-unknown
;;
-isc*)
os=-iscsysv
basic_machine=i386-unknown
;;
esac

# Decode aliases for certain CPU-COMPANY combinations.
case $basic_machine in
# Recognize the basic CPU types with without company name.
tahoe | i386 | i860 | m68k | m68000 | m88k | ns32k | arm | pyramid \
| tron | a29k | 580 | i960 | h8300 | pdp)
basic_machine=$basic_machine-unknown
;;
# Recognize the basic CPU types with with company name.
vax-* | tahoe-* | i386-* | i860-* | m68k-* | m68000-* | m88k-* \
| sparc-* | ns32k-* | fx80-* | arm-* | c[123]* \
| mips-* | pyramid-* | tron-* | a29k-* | romp-* | rs6000-* \
| none-* | 580-* | cray2-* | h8300-* | i960-* | xmp-* | ymp-* \
| hppa-*)
;;
# Recognize the various machine names and aliases which stand
# for a CPU type and a company and sometimes even an OS.
vaxv)
basic_machine=vax-dec
os=-sysv
;;
vms)
basic_machine=vax-dec
os=-vms
;;
i386v32)
basic_machine=i386-unknown
os=-sysv32
;;
i386-sco* | i386sco | sco)
basic_machine=i386-unknown
os=-scosysv322
;;
i386-isc* | isc)
basic_machine=i386-unknown
os=-iscsysv
;;
i386v4*)
basic_machine=i386-unknown
os=-sysv4
;;
i386v)
basic_machine=i386-unknown
os=-sysv
;;
spur)
basic_machine=spur-unknown
;;
alliant | fx80)
basic_machine=fx80-alliant
;;
convex-c1)
basic_machine=c1-convex
os=-sysv
;;
convex-c2)
basic_machine=c2-convex
os=-sysv
;;
convex-c32)
basic_machine=c32-convex
os=-sysv
;;
convex-c34)
basic_machine=c34-convex
os=-sysv
;;
convex-c38)
basic_machine=c38-convex
os=-sysv
;;
m88k-omron*)
basic_machine=m88k-omron
;;
merlin)
basic_machine=ns32k-utek
os=-sysv
;;
crds | unos)
basic_machine=m68k-crds
;;
encore | umax | mmax)
basic_machine=ns32k-encore
os=-sysv
;;
genix)
basic_machine=ns32k-ns
;;
iris | iris4d)
basic_machine=mips-sgi
os=-irix
;;
news | news700 | news800 | news900)
basic_machine=m68k-sony
os=-newsos
;;
3b1 | 7300 | 7300-att | att-7300 | pc7300 | safari | unixpc)
basic_machine=m68k-att
;;
delta | 3300 | motorola-3300 | motorola-delta \
| 3300-motorola | delta-motorola)
basic_machine=m68k-motorola
;;
balance)
basic_machine=ns32k-sequent
os=-dynix
;;
pc532)
basic_machine=ns32k-pc532
;;
symmetry)
basic_machine=i386-sequent
os=-dynix
;;
sun2)
basic_machine=m68000-sun
;;
sun2os3)
basic_machine=m68000-sun
os=-sunos3
;;
sun2os4)
basic_machine=m68000-sun
os=-sunos4
;;
sun3os3)
basic_machine=m68k-sun
os=-sunos3
;;
sun3os4)
basic_machine=m68k-sun
os=-sunos4
;;
sun4os3)
basic_machine=sparc-sun
os=-sunos3
;;
sun4os4)
basic_machine=sparc-sun
os=-sunos4
;;
sun3)
basic_machine=m68k-sun
;;
sun4)
basic_machine=sparc-sun
;;
pbd)
basic_machine=sparc-unicom
;;
sun386 | sun386i | roadrunner)
basic_machine=i386-sun
;;
ps2)
basic_machine=i386-ibm
;;
next)
basic_machine=m68k-next
os=-sysv
;;
amiga)
basic_machine=m68k-cbm
;;
hp9k3[2-9][0-9])
basic_machine=m68k-hp
;;
hp9k31[0-9] | hp9k2[0-9][0-9])
basic_machine=m68000-hp
;;
hp9k8[0-9][0-9] | hp9k7[0-9][0-9] | hp8[0-9][0-9] | hp7[0-9][0-9])
basic_machine=hp800-hp
;;
isi68 | isi)
basic_machine=m68k-isi
os=-sysv
;;
apollo68)
basic_machine=m68k-apollo
os=-sysv
;;
altos | altos3068)
basic_machine=m68k-altos
;;
miniframe)
basic_machine=m68000-convergent
;;
tower | tower-32)
basic_machine=m68k-ncr
;;
news-3600 | risc-news)
basic_machine=mips-sony
os=-newsos
;;
decstation-dec | decstation | decstation-3100 | pmax | pmin | dec3100 | decstatn)
basic_machine=mips-dec
;;
magnum | m3230)
basic_machine=mips-mips
os=-sysv
;;
gmicro)
basic_machine=tron-gmicro
os=-sysv
;;
rtpc | rtpc-*)
basic_machine=romp-ibm
;;
am29k)
basic_machine=a29k-none
os=-bsd
;;
amdahl)
basic_machine=580-amdahl
os=-sysv
;;
amigados)
basic_machine=m68k-cbm
os=-amigados
;;
amigaunix | amix)
basic_machine=m68k-cbm
os=-amix
;;
cray | ymp)
basic_machine=ymp-cray
os=-unicos
;;
cray2)
basic_machine=cray2-cray
os=-unicos
;;
xmp)
basic_machine=xmp-cray
os=-unicos
;;
delta88)
basic_machine=m88k-motorola
os=-m88kbcs
;;
dpx2)
basic_machine=m68k-bull
os=-sysv
;;
ebmon29k)
basic_machine=a29k-amd
os=-ebmon
;;
h8300hds)
basic_machine=h8300-hitachi
os=-hds
;;
harris)
basic_machine=m88k-harris
os=-m88kbcs
;;
hp300bsd)
basic_machine=m68k-hp
os=-bsd
;;
hp300hpux)
basic_machine=m68k-hp
os=-hpux
;;
hp9k2[0-9][0-9] | hp9k31[0-9])
basic_machine=m68000-hp
os=-hpux
;;
hp9k3[2-9][0-9])
basic_machine=m68k-hp
os=-hpux
;;
ncr3000)
basic_machine=i386-ncr
os=-sysv4
;;
news1000)
basic_machine=m68030-sony
os=-newsos
;;
nindy960)
basic_machine=i960-intel
os=-nindy
;;
pn)
basic_machine=pn-gould
os=-sysv
;;
np1)
basic_machine=np1-gould
os=-sysv
;;
ultra3)
basic_machine=a29k-nyu
os=-sym1
;;
vxworks960)
basic_machine=i960-wrs
os=-vxworks
;;
vxworks68)
basic_machine=m68k-wrs
os=-vxworks
;;
none)
basic_machine=none-none
os=-none
;;

# Here we handle the default manufacturer of certain CPU types. It is in
# some cases the only manufacturer, in others, it is the most popular.
mips)
basic_machine=mips-mips
;;
romp)
basic_machine=romp-ibm
;;
rs6000)
basic_machine=rs6000-ibm
;;
vax)
basic_machine=vax-dec
;;
sparc)
basic_machine=sparc-sun
;;
fx2800)
basic_machine=i860-alliant
;;
*)
echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2
exit 1
;;
esac

# Here we canonicalize certain aliases for manufacturers.
case $basic_machine in
*-digital*)
basic_machine=`echo $basic_machine | sed 's/digital.*/dec/'`
;;
*-commodore*)
basic_machine=`echo $basic_machine | sed 's/commodore.*/cbm/'`
;;
*)
;;
esac

# Decode manufacturer-specific aliases for certain operating systems.

if [ "$os" ]
then
case $os in
# First accept the basic system types.
# The portable systems comes first.
# Each alternative must end in a *, to match a version number.
-bsd* | -sysv* | -mach* | -minix* | -genix* | -ultrix* \
| -vms* | -sco* | -esix* | -isc* | -aix* | -sunos* | -hpux* \
| -unos* | -osf* | -luna* | -dgux* | -solari* | -sym* | -amix* \
| -amigados* | -msdos* \
| -nindy* | -vxworks* | -ebmon* | -hds* | -m88kbcs*)
;;
-newsos*)
os=-bsd
;;
-osfrose*)
os=-osf
;;
-osf*)
os=-bsd
;;
-dynix*)
os=-bsd
;;
-aos*)
os=-bsd
;;
-ctix* | -irix* | -uts*)
os=-sysv
;;
-svr4)
os=-sysv4
;;
-svr3)
os=-sysv3
;;
*)
# Get rid of the `-' at the beginning of $os.
os=`echo $1 | sed 's/[^-]*-//'`
echo Invalid configuration \`$1\': system \`$os\' not recognized 1>&2
exit 1
;;
esac
else

# Here we handle the default operating systems that come with various machines.
# The value should be what the vendor currently ships out the door with their
# machine or put another way, the most popular os provided with the machine.
case $basic_machine in
*-dec | vax-*)
os=-ultrix42
;;
i386-sun)
os=-sunos402
;;
m68000-sun)
os=-sunos3
# This also exists in the configure program, but was not the
# default.
# os=-sunos4
;;
sparc-* | *-sun)
os=-sunos411
;;
romp-*)
os=-bsd
;;
*-ibm)
os=-aix
;;
*-hp)
os=-hpux
;;
*-sgi | i860-* | *-att | *-ncr | *-altos | *-motorola | *-convergent)
os=-sysv
;;
*-cbm)
os=-amigados
;;
*-dg)
os=-dgux
;;
m88k-omron*)
os=-luna
;;
*-crds)
os=-unos
;;
*-ns)
os=-genix
;;
i386-*)
os=-scosysv322
;;
*)
os=-none
;;
esac
fi

# Here we handle the case where we know the os, and the CPU type, but not the
# manufacturer. We pick the logical manufacturer.
vendor=unknown
case $basic_machine in
*-unknown)
case $os in
-sunos*)
vendor=sun
;;
-aix*)
vendor=ibm
;;
-hpux*)
vendor=hp
;;
-unos*)
vendor=crds
;;
-dgux*)
vendor=dg
;;
-luna*)
vendor=omron
;;
-genix*)
vendor=ns
;;
esac
basic_machine=`echo $basic_machine | sed "s/unknown/$vendor/"`
;;
esac

echo $basic_machine$os
@EOF

chmod 755 config.sub

echo x - config/pdp.c
cat >config/pdp.c <<'@EOF'
/* Subroutines for gcc2 for pdp11.
Copyright (C) 1991 Free Software Foundation, Inc.
Contributed by Michael K. Gschwind (mi...@vlsivie.tuwien.ac.at)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */

#ifndef FILE
#include <stdio.h>
#endif
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"

/*
#define FPU_REG_P(X) ((X)>=8 && (X)<14)
#define CPU_REG_P(X) ((X)>=0 && (X)<8)
*/

/* this is the current value returned by the macro FIRST_PARM_OFFSET
defined in tm.h */
int current_first_parm_offset;

/* This is where the condition code register lives. */
/* rtx cc0_reg_rtx; - no longer needed? */

static rtx find_addr_reg ();

/* Nonzero if OP is a valid second operand for an arithmetic insn. */

int
arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode) || GET_CODE (op) == CONST_INT);
}

int
const_immediate_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == CONST_INT);
}

int
expand_shift_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == CONST_INT
&& abs (INTVAL(op)) > 1
&& abs (INTVAL(op)) <= 4);
}

/*
stream is a stdio stream to output the code to.
size is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used.
*/

void
output_function_prologue(stream, size)
FILE *stream;
int size;
{
extern char call_used_regs[];
extern int frame_pointer_needed;

int fsize = ((size) + 1) & ~1;
int regno, nregs, i;
int offset = 0;

int via_ac = -1;

fprintf (stream, "\n\t /* function prologue %s*/\n", current_function_name);

/* if we are outputting code for main,
the switch FPU to right mode if TARGET_FPU */
if ( (strcmp ("main", current_function_name) == 0)
&& TARGET_FPU)
{
fprintf(stream, "\t/* switch cpu to double float, single integer */\n");
fprintf(stream, "\tsetd\n");
fprintf(stream, "\tseti\n\n");
}

if (frame_pointer_needed)
{
fprintf(stream, "\tmov fp, -(sp)\n");
fprintf(stream, "\tmov sp, fp\n");
}
else
{
/* DON'T SAVE FP */
}

/* make frame */
if (fsize)
fprintf (stream, "\tsub %d, sp\n", fsize);

/* save CPU registers */
for (regno = 0; regno < 8; regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
if (! ((regno == FRAME_POINTER_REGNUM)
&& frame_pointer_needed))
fprintf (stream, "\tmov %s, -(sp)\n", reg_names[regno]);
/* fpu regs saving */

/* via_ac specifies the ac to use for saving ac4, ac5 */
via_ac = -1;

for (regno = 8; regno < FIRST_PSEUDO_REGISTER ; regno++)
{
/* ac0 - ac3 */
if (LOAD_FPU_REG_P(regno)
&& regs_ever_live[regno]
&& ! call_used_regs[regno])
{
fprintf (stream, "\tfstd %s, -(sp)\n", reg_names[regno]);
via_ac = regno;
}

/* maybe make ac4, ac5 call used regs?? */
/* ac4 - ac5 */
if (NO_LOAD_FPU_REG_P(regno)
&& regs_ever_live[regno]
&& ! call_used_regs[regno])
{
if (via_ac == -1)
abort();

fprintf (stream, "\tfldd %s, %s\n", reg_names[regno], reg_names[via_ac]);
fprintf (stream, "\tfstd %s, -(sp)\n", reg_names[via_ac]);
}
}

fprintf (stream, "\t/* end of prologue */\n\n");
}

/*
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only. This is mandatory because
of alloca; we also take advantage of it to omit stack adjustments
before returning. */

/* maybe we can make leaf functions faster by switching to the
second register file - this way we don't have to save regs!
leaf functions are ~ 50% of all functions (dynamically!)

set/clear bit 11 (dec. 2048) to status word for switching -
but how can we do this? pdp11/45 says bit may only be set (p.24)
switching to kernel is probably more expensive, so we'll leave it
like this

maybe as option if you want to generate code for kernel mode? */


void
output_function_epilogue(stream, size)
FILE *stream;
int size;
{
extern char call_used_regs[];
extern int may_call_alloca;

int fsize = ((size) + 1) & ~1;
int nregs, regno, i, j, k, adjust_fp;

int via_ac;

fprintf (stream, "\n\t /*function epilogue */\n");

if (frame_pointer_needed)
{
/* hope this is safe - m68k does it also .... */
regs_ever_live[FRAME_POINTER_REGNUM] = 0;

for (i =7, j = 0 ; i >= 0 ; i--)
if (regs_ever_live[i] && ! call_used_regs[i])
j++;

/* remember # of pushed bytes for CPU regs */
k = 2*j;

for (i =7 ; i >= 0 ; i--)
if (regs_ever_live[i] && ! call_used_regs[i])
fprintf(stream, "\tmov %d(fp), %s\n",-fsize-2*j--, reg_names[i]);

/* get ACs */
via_ac = FIRST_PSEUDO_REGISTER -1;

for (i = FIRST_PSEUDO_REGISTER; i > 7; i--)
if (regs_ever_live[i] && ! call_used_regs[i])
{
via_ac = i;
k += 8;
}

for (i = FIRST_PSEUDO_REGISTER; i > 7; i--)
{
if (LOAD_FPU_REG_P(i)
&& regs_ever_live[i]
&& ! call_used_regs[i])
{
fprintf(stream, "\tfldd %d(fp), %s\n", -fsize-k, reg_names[i]);
k -= 8;
}

if (NO_LOAD_FPU_REG_P(i)
&& regs_ever_live[i]
&& ! call_used_regs[i])
{
if (! LOAD_FPU_REG_P(via_ac))
abort();

fprintf(stream, "\tfldd %d(fp), %s\n", -fsize-k, reg_names[via_ac]);
fprintf(stream, "\tfstd %s, %s\n", reg_names[via_ac], reg_names[i]);
k -= 8;
}
}

fprintf(stream, "\tmov fp, sp\n");
fprintf (stream, "\tmov (sp)+, fp\n");
}
else
{
via_ac = FIRST_PSEUDO_REGISTER -1;

/* get ACs */
for (i = FIRST_PSEUDO_REGISTER; i > 7; i--)
if (regs_ever_live[i] && call_used_regs[i])
via_ac = i;

for (i = FIRST_PSEUDO_REGISTER; i > 7; i--)
{
if (LOAD_FPU_REG_P(i)
&& regs_ever_live[i]
&& ! call_used_regs[i])
fprintf(stream, "\tfldd (sp)+, %s\n", reg_names[i]);

if (NO_LOAD_FPU_REG_P(i)
&& regs_ever_live[i]
&& ! call_used_regs[i])
{
if (! LOAD_FPU_REG_P(via_ac))
abort();

fprintf(stream, "\tfldd (sp)+, %s\n", reg_names[via_ac]);
fprintf(stream, "\tfstd %s, %s\n", reg_names[via_ac], reg_names[i]);
}
}

for (i=7; i >= 0; i--)
if (regs_ever_live[i] && !call_used_regs[i])
fprintf(stream, "\tmov (sp)+, %s\n", reg_names[i]);

if (fsize)
fprintf((stream), "\tadd %d, sp\n", fsize);
}

fprintf (stream, "\trts pc\n");
fprintf (stream, "\t/* end of epilogue*/\n\n\n");
}

/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
static char *
singlemove_string (operands)
rtx *operands;
{
if (operands[1] != const0_rtx)
return "mov %1,%0";

return "clr %0";
}


/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. */

char *
output_move_double (operands)
rtx *operands;
{
enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
rtx latehalf[2];
rtx addreg0 = 0, addreg1 = 0;

/* First classify both operands. */

if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
optype0 = POPOP;
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
optype0 = PUSHOP;
else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;

if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1]))
#if 0
|| GET_CODE (operands[1]) == CONST_DOUBLE)
#endif
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
optype1 = POPOP;
else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
optype1 = PUSHOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;

/* Check for the cases that the operand constraints are not
supposed to allow to happen. Abort if we get one,
because generating code for these cases is painful. */

if (optype0 == RNDOP || optype1 == RNDOP)
abort ();

/* If one operand is decrementing and one is incrementing
decrement the former register explicitly
and change that operand into ordinary indexing. */

if (optype0 == PUSHOP && optype1 == POPOP)
{
operands[0] = XEXP (XEXP (operands[0], 0), 0);
output_asm_insn ("sub $4,%0", operands);
operands[0] = gen_rtx (MEM, SImode, operands[0]);
optype0 = OFFSOP;
}
if (optype0 == POPOP && optype1 == PUSHOP)
{
operands[1] = XEXP (XEXP (operands[1], 0), 0);
output_asm_insn ("sub $4,%1", operands);
operands[1] = gen_rtx (MEM, SImode, operands[1]);
optype1 = OFFSOP;
}

/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the second word. */

if (optype0 == MEMOP)
addreg0 = find_addr_reg (XEXP (operands[0], 0));

if (optype1 == MEMOP)
addreg1 = find_addr_reg (XEXP (operands[1], 0));

/* Ok, we can do one word at a time.
Normally we do the low-numbered word first,
but if either operand is autodecrementing then we
do the high-numbered word first.

In either case, set up in LATEHALF the operands to use
for the high-numbered word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */

if (optype0 == REGOP)
latehalf[0] = gen_rtx (REG, HImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adj_offsettable_operand (operands[0], 2);
else
latehalf[0] = operands[0];

if (optype1 == REGOP)
latehalf[1] = gen_rtx (REG, HImode, REGNO (operands[1]) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adj_offsettable_operand (operands[1], 2);
else if (optype1 == CNSTOP)
{
if (CONSTANT_P (operands[1]))
{
/* now the mess begins, high word is in lower word???

that's what ashc makes me think, but I don't remember :-( */
latehalf[1] = gen_rtx(CONST_INT, VOIDmode,
INTVAL(operands[1])>>16);
operands[1] = gen_rtx(CONST_INT, VOIDmode,
INTVAL(operands[1])&0xff);
}
else if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
/* immediate 32 bit values not allowed */
abort();
}
}
else
latehalf[1] = operands[1];

/* If insn is effectively movd N(sp),-(sp) then we will do the
high word first. We should use the adjusted operand 1 (which is N+4(sp))
for the low word as well, to compensate for the first decrement of sp. */
if (optype0 == PUSHOP
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
operands[1] = latehalf[1];

/* If one or both operands autodecrementing,
do the two words, high-numbered first. */

/* Likewise, the first move would clobber the source of the second one,
do them in the other order. This happens only for registers;
such overlap can't happen in memory unless the user explicitly
sets it up, and that is an undefined circumstance. */

if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& REGNO (operands[0]) == REGNO (latehalf[1])))
{
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add $2,%0", &addreg0);
if (addreg1)
output_asm_insn ("add $2,%0", &addreg1);

/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);

/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("sub $2,%0", &addreg0);
if (addreg1)
output_asm_insn ("sub $2,%0", &addreg1);

/* Do low-numbered word. */
return singlemove_string (operands);
}

/* Normal case: do the two words, low-numbered first. */

output_asm_insn (singlemove_string (operands), operands);

/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add $2,%0", &addreg0);
if (addreg1)
output_asm_insn ("add $2,%0", &addreg1);

/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);

/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("sub $2,%0", &addreg0);
if (addreg1)
output_asm_insn ("sub $2,%0", &addreg1);

return "";
}
/* Output assembler code to perform a quadword move insn
with operands OPERANDS. */

char *
output_move_quad (operands)
rtx *operands;
{
enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
rtx latehalf[2];
rtx addreg0 = 0, addreg1 = 0;

output_asm_insn(";; movdi/df: %1 -> %0", operands);

if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
optype0 = POPOP;
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
optype0 = PUSHOP;
else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;

if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1])
|| GET_CODE (operands[1]) == CONST_DOUBLE)
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
optype1 = POPOP;
else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
optype1 = PUSHOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;

/* Check for the cases that the operand constraints are not
supposed to allow to happen. Abort if we get one,
because generating code for these cases is painful. */

if (optype0 == RNDOP || optype1 == RNDOP)
abort ();

/* check if we move a CPU reg to an FPU reg, or vice versa! */
if (optype0 == REGOP && optype1 == REGOP)
/* bogus - 64 bit cannot reside in CPU! */
if (CPU_REG_P(REGNO(operands[0]))
|| CPU_REG_P (REGNO(operands[1])))
abort();

if (optype0 == REGOP || optype1 == REGOP)
{
/* check for use of clrd????
if you ever allow ac4 and ac5 (now we require secondary load)
you must check whether
you want to load into them or store from them -
then dump ac0 into $help$ movce ac4/5 to ac0, do the
store from ac0, and restore ac0 - if you can find
an unused ac[0-3], use that and you save a store and a load!*/

if (FPU_REG_P(REGNO(operands[0])))
{
if (GET_CODE(operands[1]) == CONST_DOUBLE)
{
union { double d; int i[2]; } u;
u.i[0] = CONST_DOUBLE_LOW (operands[1]);
u.i[1] = CONST_DOUBLE_HIGH (operands[1]);

if (u.d == 0.0)
return "clrd %0";
}

return "ldd %1, %0";
}

if (FPU_REG_P(REGNO(operands[1])))
return "std %1, %0";
}

/* If one operand is decrementing and one is incrementing
decrement the former register explicitly
and change that operand into ordinary indexing. */

if (optype0 == PUSHOP && optype1 == POPOP)
{
operands[0] = XEXP (XEXP (operands[0], 0), 0);
output_asm_insn ("sub $8,%0", operands);
operands[0] = gen_rtx (MEM, DImode, operands[0]);
optype0 = OFFSOP;
}
if (optype0 == POPOP && optype1 == PUSHOP)
{
operands[1] = XEXP (XEXP (operands[1], 0), 0);
output_asm_insn ("sub $8,%1", operands);
operands[1] = gen_rtx (MEM, SImode, operands[1]);
optype1 = OFFSOP;
}

/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the second word. */

if (optype0 == MEMOP)
addreg0 = find_addr_reg (XEXP (operands[0], 0));

if (optype1 == MEMOP)
addreg1 = find_addr_reg (XEXP (operands[1], 0));

/* Ok, we can do one word at a time.
Normally we do the low-numbered word first,
but if either operand is autodecrementing then we
do the high-numbered word first.

In either case, set up in LATEHALF the operands to use
for the high-numbered word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */

if (optype0 == REGOP)
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2);
else if (optype0 == OFFSOP)
latehalf[0] = adj_offsettable_operand (operands[0], 4);
else
latehalf[0] = operands[0];

if (optype1 == REGOP)
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2);
else if (optype1 == OFFSOP)
latehalf[1] = adj_offsettable_operand (operands[1], 4);
else if (optype1 == CNSTOP)
{
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
/* floats only. not yet supported!

-- compute it into PDP float format, - internally,
just use IEEE and ignore possible problems ;-)

we might get away with it !!!! */

abort();

#ifndef HOST_WORDS_BIG_ENDIAN
latehalf[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (operands[1]));
operands[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_HIGH (operands[1]));
#else /* HOST_WORDS_BIG_ENDIAN */
latehalf[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_HIGH (operands[1]));
operands[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (operands[1]));
#endif /* HOST_WORDS_BIG_ENDIAN */
}
}
else
latehalf[1] = operands[1];

/* If insn is effectively movd N(sp),-(sp) then we will do the
high word first. We should use the adjusted operand 1 (which is N+4(sp))
for the low word as well, to compensate for the first decrement of sp. */
if (optype0 == PUSHOP
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
operands[1] = latehalf[1];

/* If one or both operands autodecrementing,
do the two words, high-numbered first. */

/* Likewise, the first move would clobber the source of the second one,
do them in the other order. This happens only for registers;
such overlap can't happen in memory unless the user explicitly
sets it up, and that is an undefined circumstance. */

if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& REGNO (operands[0]) == REGNO (latehalf[1])))
{
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add $4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add $4,%0", &addreg1);

/* Do that word. */
output_asm_insn(output_move_double(latehalf), latehalf);

/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("sub $4,%0", &addreg0);
if (addreg1)
output_asm_insn ("sub $4,%0", &addreg1);

/* Do low-numbered word. */
return output_move_double (operands);
}

/* Normal case: do the two words, low-numbered first. */

output_asm_insn (output_move_double (operands), operands);

/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add $4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add $4,%0", &addreg1);

/* Do that word. */
output_asm_insn (output_move_double (latehalf), latehalf);

/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("sub $4,%0", &addreg0);
if (addreg1)
output_asm_insn ("sub $4,%0", &addreg1);

return "";
}


/* Return a REG that occurs in ADDR with coefficient 1.
ADDR can be effectively incremented by incrementing REG. */

static rtx
find_addr_reg (addr)
rtx addr;
{
while (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG)
addr = XEXP (addr, 0);
if (GET_CODE (XEXP (addr, 1)) == REG)
addr = XEXP (addr, 1);
if (CONSTANT_P (XEXP (addr, 0)))
addr = XEXP (addr, 1);
if (CONSTANT_P (XEXP (addr, 1)))
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) == REG)
return addr;
return 0;
}

/* Output an ascii string. */
output_ascii (file, p, size)
FILE *file;
char *p;
int size;
{
int i;

fprintf (file, "\t.byte \"");

for (i = 0; i < size; i++)
{
register int c = p[i];
if (c == '\"' || c == '\\')
putc ('\\', file);
if (c >= ' ' && c < 0177)
putc (c, file);
else
{
fprintf (file, "\\%03o", c);
/* After an octal-escape, if a digit follows,
terminate one string constant and start another.
The Vax assembler fails to stop reading the escape
after three digits, so this is the only way we
can get it to parse the data properly. */
if (i < size - 1 && p[i + 1] >= '0' && p[i + 1] <= '9')
fprintf (file, "\"\n\tstring \"");
}
}
fprintf (file, "\"\n");
}


/* --- stole from out-vax, needs changes */

print_operand_address (file, addr)
FILE *file;
register rtx addr;
{
register rtx reg1, reg2, breg, ireg;
rtx offset;

retry:

switch (GET_CODE (addr))
{
case MEM:
fprintf (file, "@");
addr = XEXP (addr, 0);
goto retry;

case REG:
fprintf (file, "(%s)", reg_names[REGNO (addr)]);
break;

case PRE_DEC:
fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
break;

case POST_INC:
fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
break;

case PLUS:
reg1 = 0; reg2 = 0;
ireg = 0; breg = 0;
offset = 0;
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
|| GET_CODE (XEXP (addr, 0)) == MEM)
{
offset = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
|| GET_CODE (XEXP (addr, 1)) == MEM)
{
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) != PLUS)
;
else if (GET_CODE (XEXP (addr, 0)) == MULT)
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == MULT)
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 0)) == REG)
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == REG)
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT)
{
if (reg1 == 0)
reg1 = addr;
else
reg2 = addr;
addr = 0;
}
if (offset != 0)
{
if (addr != 0) abort ();
addr = offset;
}
if (reg1 != 0 && GET_CODE (reg1) == MULT)
{
breg = reg2;
ireg = reg1;
}
else if (reg2 != 0 && GET_CODE (reg2) == MULT)
{
breg = reg1;
ireg = reg2;
}
else if (reg2 != 0 || GET_CODE (addr) == MEM)
{
breg = reg2;
ireg = reg1;
}
else
{
breg = reg1;
ireg = reg2;
}
if (addr != 0)
output_address (addr);
if (breg != 0)
{
if (GET_CODE (breg) != REG)
abort ();
fprintf (file, "(%s)", reg_names[REGNO (breg)]);
}
if (ireg != 0)
{
if (GET_CODE (ireg) == MULT)
ireg = XEXP (ireg, 0);
if (GET_CODE (ireg) != REG)
abort ();
abort();
fprintf (file, "[%s]", reg_names[REGNO (ireg)]);
}
break;

default:
output_addr_const (file, addr);
}
}

/* register move costs, indexed by regs */

static int move_costs[N_REG_CLASSES][N_REG_CLASSES] =
{
/* NO MUL GEN LFPU NLFPU FPU ALL */

/* NO */ { 0, 0, 0, 0, 0, 0, 0},
/* MUL */ { 0, 2, 2, 10, 22, 22, 22},
/* GEN */ { 0, 2, 2, 10, 22, 22, 22},
/* LFPU */ { 0, 10, 10, 2, 2, 2, 10},
/* NLFPU */ { 0, 22, 22, 2, 2, 2, 22},
/* FPU */ { 0, 22, 22, 2, 2, 2, 22},
/* ALL */ { 0, 22, 22, 10, 22, 22, 22}
} ;


/* -- note that some moves are tremendously expensive,
because they require lots of tricks? do we have to
charge the costs incurred by secondary reload class
-- as we do here with 22 -- or not ? */

int
register_move_cost(c1, c2)
enum reg_class c1, c2;
{
return move_costs[(int)c1][(int)c2];
}

char *
output_jump(pos, neg, length)
int length;
char *pos, *neg;
{
static int x = 0;

static char buf[1000];

#if 0
/* currently we don't need this, because the tstdf and cmpdf
copy the condition code immediately, and other float operations are not
yet recognized as changing the FCC - if so, then the length-cost of all
jump insns increases by one, because we have to potentially copy the
FCC! */
if (cc_status.flags & CC_IN_FPU)
output_asm_insn("cfcc", NULL);
#endif

switch (length)
{
case 1:

strcpy(buf, pos);
strcat(buf, " %l0");

return buf;

case 3:

sprintf(buf, "%s JMP@%d\n\tjmp %%l0\nJMP@%d:", neg, x, x);

x++;

return buf;

default:

abort();
}

}

void
notice_update_cc_on_set(exp, insn)
rtx exp;
rtx insn;
{
if (GET_CODE (SET_DEST (exp)) == CC0)
{
cc_status.flags = 0;
cc_status.value1 = SET_DEST (exp);
cc_status.value2 = SET_SRC (exp);

/*
if (GET_MODE(SET_SRC(exp)) == DFmode)
cc_status.flags |= CC_IN_FPU;
*/
}
else if ((GET_CODE (SET_DEST (exp)) == REG
|| GET_CODE (SET_DEST (exp)) == MEM)
&& GET_CODE (SET_SRC (exp)) != PC
&& (GET_MODE (SET_DEST(exp)) == HImode
|| GET_MODE (SET_DEST(exp)) == QImode)
&& (GET_CODE (SET_SRC(exp)) == PLUS
|| GET_CODE (SET_SRC(exp)) == MINUS
|| GET_CODE (SET_SRC(exp)) == AND
|| GET_CODE (SET_SRC(exp)) == IOR
|| GET_CODE (SET_SRC(exp)) == XOR
|| GET_CODE (SET_SRC(exp)) == NOT
|| GET_CODE (SET_SRC(exp)) == NEG
|| GET_CODE (SET_SRC(exp)) == REG
|| GET_CODE (SET_SRC(exp)) == MEM))
{
cc_status.flags = 0;
cc_status.value1 = SET_SRC (exp);
cc_status.value2 = SET_DEST (exp);

if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
&& cc_status.value2
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
cc_status.value2 = 0;
if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
&& cc_status.value2
&& GET_CODE (cc_status.value2) == MEM)
cc_status.value2 = 0;
}
else if (GET_CODE (SET_SRC (exp)) == CALL)
{
CC_STATUS_INIT;
}
else if (GET_CODE (SET_DEST (exp)) == REG)
/* what's this ? */
{
if ((cc_status.value1
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1)))
cc_status.value1 = 0;
if ((cc_status.value2
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2)))
cc_status.value2 = 0;
}
else if (SET_DEST(exp) == pc_rtx)
{
/* jump */
}
else /* if (GET_CODE (SET_DEST (exp)) == MEM) */
{
/* the last else is a bit paranoic, but since nearly all instructions
play with condition codes, it's reasonable! */

CC_STATUS_INIT; /* paranoia*/
}
}


int simple_memory_operand(op, mode)
rtx op;
enum machine_mode mode;
{
rtx addr, plus0, plus1;
int offset = 0;

/* Eliminate non-memory operations */
if (GET_CODE (op) != MEM)
return FALSE;

#if 0
/* dword operations really put out 2 instructions, so eliminate them. */
if (GET_MODE_SIZE (GET_MODE (op)) > (HAVE_64BIT_P () ? 8 : 4))
return FALSE;
#endif

/* Decode the address now. */

indirection:

addr = XEXP (op, 0);

switch (GET_CODE (addr))
{
case REG:
/* (R0) - no extra cost */
return 1;

case PRE_DEC:
case POST_INC:
/* -(R0), (R0)+ - cheap! */
return 0;

case MEM:
/* cheap - is encoded in addressing mode info!

-- except for @(R0), which has to be @0(R0) !!! */

if (GET_CODE (XEXP (addr, 0)) == REG)
return 0;

goto indirection;

case CONST_INT:
case LABEL_REF:
case CONST:
case SYMBOL_REF:
/* @#address - extra cost */
return 0;

case PLUS:
/* X(R0) - extra cost */
return 0;
}

return FALSE;
}

int
legitimate_address_p(mode, operand)
enum machine_mode mode;
rtx operand;
{
/* replaces GO_IF_LEGITIMATE_ADDRESS() macro -
then define it to

if (legitimate_address_p(MODE, X))
goto ADDR;

the macro is too messy to maintain! */

rtx xfoob;

/* accept (R0) */
if (GET_CODE (operand) == REG
&& REG_OK_FOR_BASE_P(operand))
return 1;

/* accept @#address */
if (CONSTANT_ADDRESS_P (operand))
return 1;


/* accept X(R0) */
if (GET_CODE (operand) == PLUS
&& GET_CODE (XEXP (operand, 0)) == REG
&& REG_OK_FOR_BASE_P (XEXP (operand, 0))
&& CONSTANT_ADDRESS_P (XEXP (operand, 1)))
return 1;

/* accept -(R0) */
if (GET_CODE (operand) == PRE_DEC
&& GET_CODE (XEXP (operand, 0)) == REG
&& REG_OK_FOR_BASE_P (GET_CODE (XEXP (operand, 0))))
return 1;

/* accept (R0)+ */
if (GET_CODE (operand) == POST_INC
&& GET_CODE (XEXP (operand, 0)) == REG
&& REG_OK_FOR_BASE_P (GET_CODE (XEXP (operand, 0))))
return 1;

/* handle another level of indirection ! */
if (GET_CODE(operand) != MEM)
return 0;

xfoob = XEXP (operand, 0);
/* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently */
/* also forbidden for float, beacuse we have to handle this */
/* in output_move_double and/or output_move_quad() - we could */
/* do it, but currently it's not worth it!!! */

/* now that DFmode cannot go into CPU register file,
maybe I should allow float ...

but then I have to handle memory-to-memory moves in movdf ?? */

if (GET_MODE_BITSIZE(mode) > 16)
return 0;

/* accept @(R0) - which is @0(R0) */
if (GET_CODE (xfoob) == REG
&& REG_OK_FOR_BASE_P(xfoob))
return 1;

/* accept @address */
if (CONSTANT_ADDRESS_P (xfoob))
return 1;

/* accept @X(R0) */
if (GET_CODE (operand) == PLUS
&& GET_CODE (XEXP (operand, 0)) == REG
&& REG_OK_FOR_BASE_P (XEXP (operand, 0))
&& CONSTANT_ADDRESS_P (XEXP (operand, 1)))
return 1;

/* accept @-(R0) */
if (GET_CODE (operand) == PRE_DEC
&& GET_CODE (XEXP (operand, 0)) == REG
&& REG_OK_FOR_BASE_P (GET_CODE (XEXP (operand, 0))))
return 1;

/* accept @(R0)+ */
if (GET_CODE (operand) == POST_INC
&& GET_CODE (XEXP (operand, 0)) == REG
&& REG_OK_FOR_BASE_P (GET_CODE (XEXP (operand, 0))))
return 1;


/* anything else illegal !*/

return 0;
}


/*
* output a block move:
*
* operands[0] ... to
* operands[1] ... from
* operands[2] ... length
* operands[3] ... alignment
* operands[4] ... scratch register
*/


char *
output_block_move(operands)
rtx *operands;
{
static int count = 0;
char buf[200];

if (GET_CODE(operands[2]) == CONST_INT
&& TARGET_TIME)
{
if (INTVAL(operands[2]) < 16
&& INTVAL(operands[3]) == 1)
{
register int i;

for (i = 1; i <= INTVAL(operands[2]); i++)
output_asm_insn("movb (%1)+, (%0)+", operands);

return "";
}
else if (INTVAL(operands[2]) < 32)
{
register int i;

for (i = 1; i <= INTVAL(operands[2])/2; i++)
output_asm_insn("mov (%1)+, (%0)+", operands);

/* may I assume that moved quantity is
multiple of alignment ???

I HOPE SO !
*/

return "";
}

/* can do other clever things, maybe... */
}

if (CONSTANT_P(operands[2]) )
{
/* just move count to scratch */
output_asm_insn("mov %2, %4", operands);
}
else
{
/* just clobber the register */
operands[4] = operands[2];
}

/* switch over alignment */
switch (INTVAL(operands[3]))
{
case 1:

/*
x:
movb (%1)+, (%0)+

if (TARGET_45)
sob %4,x
else
dec %4
bgt x

*/

sprintf(buf, "\nmovestrhi%d:", count);
output_asm_insn(buf, NULL);

output_asm_insn("movb (%1)+, (%0)+", operands);

if (TARGET_45)
{
sprintf(buf, "sob %%4, movestrhi%d", count);
output_asm_insn(buf, operands);
}
else
{
output_asm_insn("dec %4", operands);

sprintf(buf, "bgt movestrhi%d", count);
output_asm_insn(buf, NULL);
}

count ++;
break;

case 2:

/*
asr %4

x:

mov (%1)+, (%0)+

if (TARGET_45)
sob %4, x
else
dec %4
bgt x
*/

generate_compact_code:

output_asm_insn("asr %4", operands);

sprintf(buf, "\nmovestrhi%d:", count);
output_asm_insn(buf, NULL);

output_asm_insn("mov (%1)+, (%0)+", operands);

if (TARGET_45)
{
sprintf(buf, "sob %%4, movestrhi%d", count);
output_asm_insn(buf, operands);
}
else
{
output_asm_insn("dec %4", operands);

sprintf(buf, "bgt movestrhi%d", count);
output_asm_insn(buf, NULL);
}

count ++;
break;

case 4:

/*

asr %4
asr %4

x:

mov (%1)+, (%0)+
mov (%1)+, (%0)+

if (TARGET_45)
sob %4, x
else
dec %4
bgt x
*/

if (TARGET_SPACE)
goto generate_compact_code;

output_asm_insn("asr %4", operands);
output_asm_insn("asr %4", operands);

sprintf(buf, "\nmovestrhi%d:", count);
output_asm_insn(buf, NULL);

output_asm_insn("mov (%1)+, (%0)+", operands);
output_asm_insn("mov (%1)+, (%0)+", operands);

if (TARGET_45)
{
sprintf(buf, "sob %%4, movestrhi%d", count);
output_asm_insn(buf, operands);
}
else
{
output_asm_insn("dec %4", operands);

sprintf(buf, "bgt movestrhi%d", count);
output_asm_insn(buf, NULL);
}

count ++;
break;

default:

/*

asr %4
asr %4
asr %4

x:

mov (%1)+, (%0)+
mov (%1)+, (%0)+
mov (%1)+, (%0)+
mov (%1)+, (%0)+

if (TARGET_45)
sob %4, x
else
dec %4
bgt x
*/


if (TARGET_SPACE)
goto generate_compact_code;

output_asm_insn("asr %4", operands);
output_asm_insn("asr %4", operands);
output_asm_insn("asr %4", operands);

sprintf(buf, "\nmovestrhi%d:", count);
output_asm_insn(buf, NULL);

output_asm_insn("mov (%1)+, (%0)+", operands);
output_asm_insn("mov (%1)+, (%0)+", operands);
output_asm_insn("mov (%1)+, (%0)+", operands);
output_asm_insn("mov (%1)+, (%0)+", operands);

if (TARGET_45)
{
sprintf(buf, "sob %%4, movestrhi%d", count);
output_asm_insn(buf, operands);
}
else
{
output_asm_insn("dec %4", operands);

sprintf(buf, "bgt movestrhi%d", count);
output_asm_insn(buf, NULL);
}

count ++;
break;

;

}

return "";
}
@EOF

chmod 644 config/pdp.c

echo x - config/pdp.h
cat >config/pdp.h <<'@EOF'
/* Definitions of target machine for GNU compiler, for the pdp
Copyright (C) 1991 Free Software Foundation, Inc.
Contributed by Michael K. Gschwind (mi...@vlsivie.tuwien.ac.at)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */


/* declarations */
char *output_jump();
char *output_move_double();
char *output_move_quad();
char *output_block_move();

/* check whther load_fpu_reg or not */
#define LOAD_FPU_REG_P(x) ((x)>=8 && (x)<=11)
#define NO_LOAD_FPU_REG_P(x) ((x)==12 || (x)==13)
#define FPU_REG_P(x) (LOAD_FPU_REG_P(x) || NO_LOAD_FPU_REG_P(x))
#define CPU_REG_P(x) ((x)<8)

/* Names to predefine in the preprocessor for this target machine. */

#define CPP_PREDEFINES "-Dpdp11"

/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (pdp11)");


/* Generate DBX debugging information. */

/* #define DBX_DEBUGGING_INFO */

/* Run-time compilation parameters selecting different hardware subsets.
*/

extern int target_flags;

/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */

#define TARGET_SWITCHES \
{ { "fpu", 1}, \
{ "soft-float", -1}, \
/* return float result in ac0 */\
{ "ac0", 2}, \
{ "no-ac0", -2}, \
/* is 11/40 */ \
{ "40", 4}, \
{ "no-40", -4}, \
/* is 11/45 */ \
{ "45", 8}, \
{ "no-45", -8}, \
/* is 11/10 */ \
{ "10", -12}, \
/* use movstrhi for bcopy */ \
{ "bcopy", 16}, \
{ "bcopy-builtin", -16}, \
/* use 32 bit for int */ \
{ "int32", 32}, \
{ "no-int16", 32}, \
{ "int16", -32}, \
{ "no-int32", -32}, \
/* use 32 bit for float */ \
{ "float32", 64}, \
{ "no-float64", 64}, \
{ "float64", -64}, \
{ "no-float32", -64}, \
/* allow abshi pattern? - can trigger "optimizations" which make code SLOW! */\
{ "abshi", 128}, \
{ "no-abshi", -128}, \
/* is branching expensive - on a PDP, it's actually really cheap */ \
/* this is just to play aroound and check what code gcc generates */ \
{ "branch-expensive", 256}, \
{ "branch-cheap", -256}, \
/* optimize for space instead of time - just in a couple of places */ \
{ "space", 512 }, \
{ "time", -512 }, \
/* default */ \
{ "", TARGET_DEFAULT} \
}

#define TARGET_DEFAULT (1 | 8 | 128)

#define TARGET_FPU (target_flags & 1)
#define TARGET_SOFT_FLOAT (!TARGET_FPU)

#define TARGET_AC0 ((target_flags & 2) && TARGET_FPU)
#define TARGET_NO_AC0 (! TARGET_AC0)

#define TARGET_45 (target_flags & 8)
#define TARGET_40_PLUS ((target_flags & 4) || (target_flags))
#define TARGET_10 (! TARGET_40_PLUS)

#define TARGET_BCOPY_BUILTIN (! (target_flags & 16))

#define TARGET_INT16 (! TARGET_INT32)
#define TARGET_INT32 (target_flags & 32)

#define TARGET_FLOAT32 (target_flags & 64)
#define TARGET_FLOAT64 (! TARGET_FLOAT32)

#define TARGET_ABSHI_BUILTIN (target_flags & 128)

#define TARGET_BRANCH_EXPENSIVE (target_flags & 256)
#define TARGET_BRANCH_CHEAP (!TARGET_BRANCH_EXPENSIVE)

#define TARGET_SPACE (target_flags & 512)
#define TARGET_TIME (! TARGET_SPACE)

/* TYPE SIZES */
#define CHAR_TYPE_SIZE 8
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE (TARGET_INT16 ? 16 : 32)
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64

/* if we set FLOAT_TYPE_SIZE to 32, we could have the benefit
of saving core for huge arrays - the definitions are
already in md - but floats can never reside in
an FPU register - we keep the FPU in double float mode
all the time !! */
#define FLOAT_TYPE_SIZE (TARGET_FLOAT32 ? 32 : 64)
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64

/* machine types from ansi */
#define SIZE_TYPE "unsigned int" /* definition of size_t */

/* is used in cexp.y - we don't have target_flags there,
so just give default definition

hope it does not come back to haunt us! */
#define WCHAR_TYPE "int" /* or long int???? */
#define WCHAR_TYPE_SIZE 16

#define PTRDIFF_TYPE "int"

/* target machine storage layout */

/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 0

/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN 0

/* Define this if most significant word of a multiword number is numbered. */
#define WORDS_BIG_ENDIAN 1

/* number of bits in an addressible storage unit */
#define BITS_PER_UNIT 8

/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
/* This is a machine with 16-bit registers */
#define BITS_PER_WORD 16

/* Width of a word, in units (bytes).

UNITS OR BYTES - seems like units */
#define UNITS_PER_WORD 2

/* Maximum sized of reasonable data type
DImode or Dfmode ...*/
#define MAX_FIXED_MODE_SIZE 64

/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 16

/* Allocation boundary (in *bits*) for storing pointers in memory. */
#define POINTER_BOUNDARY 16

/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 16

/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 16

/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 16

/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 16

/* Define this if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1

/* Standard register usage. */

/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.

we have 8 integer registers, plus 6 float
(don't use scratch float !) */

#define FIRST_PSEUDO_REGISTER 14

/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.

On the pdp, these are:
Reg 7 = pc;
reg 6 = sp;
reg 5 = fp; not necessarily!
*/

/* don't let them touch fp regs for the time being !*/

#define FIXED_REGISTERS \
{0, 0, 0, 0, 0, 0, 1, 1, \
0, 0, 0, 0, 0, 0 }

/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */

/* don't know about fp */
#define CALL_USED_REGISTERS \
{1, 1, 0, 0, 0, 0, 1, 1, \
0, 0, 0, 0, 0, 0 }


/* Make sure everything's fine if we *don't* have an FPU.
This assumes that putting a register in fixed_regs will keep the
compiler's mitts completely off it. We don't bother to zero it out
of register classes.
*/
#define CONDITIONAL_REGISTER_USAGE \
{ \
int i; \
HARD_REG_SET x; \
if (!TARGET_FPU) \
{ \
COPY_HARD_REG_SET (x, reg_class_contents[(int)FPU_REGS]); \
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
if (TEST_HARD_REG_BIT (x, i)) \
fixed_regs[i] = call_used_regs[i] = 1; \
} \
\
if (TARGET_AC0) \
call_used_regs[8] = 1; \
}

/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
*/

#define HARD_REGNO_NREGS(REGNO, MODE) \
((REGNO < 8)? \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
:1)

/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
On the pdp, the cpu registers can hold any mode - check alignment

FPU can only hold DF - simplifies life!
*/
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((REGNO < 8)? \
((GET_MODE_BITSIZE(MODE) <= 16) \
|| (GET_MODE_BITSIZE(MODE) == 32 && !(REGNO & 1))) \
:(MODE) == DFmode)

/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) 0

/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */

/* the pdp11 pc overloaded on a register that the compiler knows about. */
#define PC_REGNUM 7

/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 6

/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 5

/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c.
*/

#define FRAME_POINTER_REQUIRED 0

/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 5

/* Register in which static-chain is passed to a function. */
/* ??? - i don't want to give up a reg for this! */
#define STATIC_CHAIN_REGNUM 4

/* Register in which address to store a structure value
is passed to a function.
let's make it an invisible first argument!!! */

#define STRUCT_VALUE 0


/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.

One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.

The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.

The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.

For any two classes, it is very desirable that there be another
class that represents their union. */

/* The pdp has a couple of classes:

MUL_REGS are used for odd numbered regs, to use in 16 bit multiplication
(even numbered do 32 bit multiply)
LMUL_REGS long multiply registers (even numbered regs )
(don't need them, all 32 bit regs are even numbered!)
GENERAL_REGS is all cpu
LOAD_FPU_REGS is the first four cpu regs, they are easier to load
NO_LOAD_FPU_REGS is ac4 and ac5, currently - difficult to load them
FPU_REGS is all fpu regs
*/

enum reg_class { NO_REGS, MUL_REGS, GENERAL_REGS, LOAD_FPU_REGS, NO_LOAD_FPU_REGS, FPU_REGS, ALL_REGS, LIM_REG_CLASSES };

#define N_REG_CLASSES (int) LIM_REG_CLASSES

/* #define SMALL_REGISTER_CLASSES */

/* Since GENERAL_REGS is the same class as ALL_REGS,
don't give it a different class number; just make it an alias. */

/* #define GENERAL_REGS ALL_REGS */

/* Give names of register classes as strings for dump file. */

#define REG_CLASS_NAMES {"NO_REGS", "MUL_REGS", "GENERAL_REGS", "LOAD_FPU_REGS", "NO_LOAD_FPU_REGS", "FPU_REGS", "ALL_REGS" }

/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */

#define REG_CLASS_CONTENTS {0, 0x00aa, 0x00ff, 0x0f00, 0x3000, 0x3f00, 0x3fff}

/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */

#define REGNO_REG_CLASS(REGNO) \
((REGNO)>=8?((REGNO)<=11?LOAD_FPU_REGS:NO_LOAD_FPU_REGS):((REGNO&1)?MUL_REGS:GENERAL_REGS))


/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS GENERAL_REGS

/* Get reg_class from a letter such as appears in the machine description. */

#define REG_CLASS_FROM_LETTER(C) \
((C) == 'f' ? FPU_REGS : \
((C) == 'd' ? MUL_REGS : \
((C) == 'a' ? LOAD_FPU_REGS : NO_REGS)))

/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.

I bits 31-16 0000
J bits 15-00 0000
K completely random 32 bit
L,M,N -1,1,0 respectively
O where doing shifts in sequence is faster than
one big shift
*/

#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? ((VALUE) & 0xffff0000) == 0 \
: (C) == 'J' ? ((VALUE) & 0x0000ffff) == 0 \
: (C) == 'K' ? (((VALUE) & 0xffff0000) != 0 \
&& ((VALUE) & 0x0000ffff) != 0) \
: (C) == 'L' ? ((VALUE) == 1) \
: (C) == 'M' ? ((VALUE) == -1) \
: (C) == 'N' ? ((VALUE) == 0) \
: (C) == 'O' ? (abs(VALUE) >1 && abs(VALUE) <= 4) \
: 0)

/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself. */

#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0)


/* Letters in the range `Q' through `U' may be defined in a
machine-dependent fashion to stand for arbitrary operand types.
The machine description macro `EXTRA_CONSTRAINT' is passed the
operand as its first argument and the constraint letter as its
second operand.

`Q' is for memory refereces using take more than 1 instruction.
`R' is for memory refereces which take 1 word for the instruction. */

#define EXTRA_CONSTRAINT(OP,CODE) \
((GET_CODE (OP) != MEM) ? 0 \
: ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
: ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
: 0)

/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class.

loading is easier into LOAD_FPU_REGS than FPU_REGS! */

#define PREFERRED_RELOAD_CLASS(X,CLASS) \
(((CLASS) != FPU_REGS)?(CLASS):LOAD_FPU_REGS)

#define SECONDARY_RELOAD_CLASS(CLASS,MODE,x) \
(((CLASS) == NO_LOAD_FPU_REGS && !(REG_P(x) && LOAD_FPU_REG_P(REGNO(x))))?LOAD_FPU_REGS:NO_REGS)

/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((CLASS == GENERAL_REGS || CLASS == MUL_REGS)? \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD): \
1 \
)


/* Stack layout; function entry, exit and calling. */

/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD

/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame.
*/
#define FRAME_GROWS_DOWNWARD

/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0

/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On the pdp11, the stack is on an even boundary */
#define PUSH_ROUNDING(BYTES) ((BYTES + 1) & ~1)

/* current_first_parm_offset stores the # of registers pushed on the
stack */
extern int current_first_parm_offset;

/* Offset of first parameter from the argument pointer register value.
For the pdp11, this is non-zero to account for the return address.
1 - return address
2 - frame pointer (always saved, even when not used!!!!)
-- chnage some day !!!:q!

*/
#define FIRST_PARM_OFFSET(FNDECL) 4

/* Value is 1 if returning from a function call automatically
pops the arguments described by the number-of-args field in the call.
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name. */

#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0

/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define BASE_RETURN_VALUE_REG(MODE) \
((MODE) == DFmode ? 8 : 0)

/* On the pdp11 the value is found in R0 (or ac0???
not without FPU!!!! ) */

#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))

/* and the called function leaves it in the first register.
Difference only on machines with register windows. */

#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))

/* Define how to find the value returned by a library function
assuming the value has mode MODE. */

#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG(MODE))

/* 1 if N is a possible register number for a function value
as seen by the caller.
On the pdp, the first "output" reg is the only register thus used.

maybe ac0 ? - as option someday! */

#define FUNCTION_VALUE_REGNO_P(N) (((N) == 0) || (TARGET_AC0 && (N) == 8))

/* should probably return DImode and DFmode in memory,lest
we fill up all regs!

have to, else we crash - exceptio: maybe return result in
ac0 if DFmode and FPU present - compatibility problem with
libraries for non-floating point ...
*/

#define RETURN_IN_MEMORY(TYPE) \
(TYPE_MODE(TYPE) == DImode || (TYPE_MODE(TYPE) == DFmode && ! TARGET_AC0))


/* 1 if N is a possible register number for function argument passing.
- not used on pdp */

#define FUNCTION_ARG_REGNO_P(N) 0

/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.

*/

#define CUMULATIVE_ARGS int

/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.

...., the offset normally starts at 0, but starts at 1 word
when the function gets a structure-value-address as an
invisible first argument. */

#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
((CUM) = 0)

/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.)

*/


#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM) += ((MODE) != BLKmode \
? (GET_MODE_SIZE (MODE)) \
: (int_size_in_bytes (TYPE))))

/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.

MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */

#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0

/* Define where a function finds its arguments.
This would be different from FUNCTION_ARG if we had register windows. */
/*
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
*/

/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */

#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0

/* This macro generates the assembly code for function entry. */
#define FUNCTION_PROLOGUE(FILE, SIZE) \
output_function_prologue(FILE, SIZE);

/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */

#define FUNCTION_PROFILER(FILE, LABELNO) \
abort ();

/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */

extern int may_call_alloca;
extern int current_function_pretend_args_size;

#define EXIT_IGNORE_STACK 1

/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE.
*/

#define FUNCTION_EPILOGUE(FILE, SIZE) \
output_function_epilogue(FILE, SIZE);

#define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) \
{ \
int offset, regno; \
offset = get_frame_size(); \
for (regno = 0; regno < 8; regno++) \
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
offset += 2; \
for (regno = 8; regno < 14; regno++) \
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
offset += 8; \
/* offset -= 2; no fp on stack frame */ \
(DEPTH_VAR) = offset; \
}


/* Addressing modes, and classification of registers for them. */

#define HAVE_POST_INCREMENT
/* #define HAVE_POST_DECREMENT */

#define HAVE_PRE_DECREMENT
/* #define HAVE_PRE_INCREMENT */

/* Macros to check register numbers against specific register classes. */

/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */

#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)

/* Now macros that check whether X is a register and also,
strictly, whether it is in a specified class.
*/



/* Maximum number of registers that can appear in a valid memory address. */

#define MAX_REGS_PER_ADDRESS 2

/* Recognize any constant value that is a valid address. */

#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)

/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */

#define LEGITIMATE_CONSTANT_P(X) (1)

/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.

Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */

#ifndef REG_OK_STRICT

/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) (1)
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) (1)

#else

/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))

#endif

/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.

*/

#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (legitimate_address_p(MODE, X)) \
goto ADDR; \
}


/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.

OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.

MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.

It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output. */

#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}


/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
On the the pdp this is for predec/postinc */

#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
{ if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
goto LABEL; \
}


/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE HImode

/* Define this if a raw index is all that is needed for a
`tablejump' insn. */
#define CASE_TAKES_INDEX_RAW

/* Define this if the tablejump instruction expects the table
to contain offsets from the address of the table.
Do not define this if the table should contain absolute addresses. */
/* #define CASE_VECTOR_PC_RELATIVE */

/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR

/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR

/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1

/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction.
*/

#define MOVE_MAX 2

/* Zero extension is faster if the target is known to be zero */
/* #define SLOW_ZERO_EXTEND */

/* Nonzero if access to memory by byte is slow and undesirable. -
*/
#define SLOW_BYTE_ACCESS 0

/* Do not break .stabs pseudos into continuations. */
#define DBX_CONTIN_LENGTH 0

/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1


/* Add any extra modes needed to represent the condition code.

CCFPmode is used for FPU, but should we use a separate reg? */
#define EXTRA_CC_MODES CCFPmode

/* the name for the mode above */
#define EXTRA_CC_NAMES "CCFPmode"

/* Give a comparison code (EQ, NE etc) and the first operand of a COMPARE,
return the mode to be used for the comparison. For floating-point, CCFPmode
should be used. */

#define SELECT_CC_MODE(OP,X) \
(GET_MODE_CLASS(GET_MODE(X)) == MODE_FLOAT? CCFPmode : CCmode)

/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */

/* #define STORE_FLAG_VALUE 1 */

/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode HImode

/* A function address in a call instruction
is a word address (for indexing purposes)
so give the MEM rtx a word's mode. */
#define FUNCTION_MODE HImode

/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap. */
/* #define NO_FUNCTION_CSE */

/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch.

-1, 0, 1 are cheaper for add, sub ...
*/

#define CONST_COSTS(RTX,CODE) \
case CONST_INT: \
if (INTVAL(RTX) == 0 \
|| INTVAL(RTX) == -1 \
|| INTVAL(RTX) == 1) \
return 0; \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
/* twice as expensive as REG */ \
return 2; \
case CONST_DOUBLE: \
/* twice (or 4 times) as expensive as 16 bit */ \
return 4;

/* cost of moving one register class to another */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) register_move_cost(CLASS1, CLASS2)

/* Tell emit-rtl.c how to initialize special values on a per-function base. */
extern int optimize;
extern struct rtx_def *cc0_reg_rtx;

#define CC_STATUS_MDEP rtx

#define CC_STATUS_MDEP_INIT (cc_status.mdep = 0)

/* Tell final.c how to eliminate redundant test instructions. */

/* Here we define machine-dependent flags and fields in cc_status
(see `conditions.h'). */

#define CC_IN_FPU 04000

/* Do UPDATE_CC if EXP is a set, used in
NOTICE_UPDATE_CC

floats only do compare correctly, else nullify ...

get cc0 out soon ...
*/

/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */

#define NOTICE_UPDATE_CC(EXP, INSN) \
{ if (GET_CODE (EXP) == SET) \
{ \
notice_update_cc_on_set(EXP, INSN); \
} \
else if (GET_CODE (EXP) == PARALLEL \
&& GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
{ \
notice_update_cc_on_set(XVECEXP (EXP, 0, 0), INSN); \
} \
else if (GET_CODE (EXP) == CALL) \
{ /* all bets are off */ CC_STATUS_INIT; } \
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
&& cc_status.value2 \
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
printf ("here!\n", cc_status.value2 = 0); \
}

/* Control the assembler format that we output. */

/* Output at beginning of assembler file. */

#if 0
#define ASM_FILE_START(FILE) \
( \
fprintf (FILE, "\t.data\n"), \
fprintf (FILE, "$help$: . = .+8 ; space for tmp moves!\n") \
/* do we need reg def's R0 = %0 etc ??? */ \
)
#else
#define ASM_FILE_START(FILE) (0)
#endif


/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */

#define ASM_APP_ON ""

/* Output to assembler file text saying following lines
no longer contain unusual constructs. */

#define ASM_APP_OFF ""

/* Output before read-only data. */

#define TEXT_SECTION_ASM_OP "\t.text\n"

/* Output before writable data. */

#define DATA_SECTION_ASM_OP "\t.data\n"

/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */

#define REGISTER_NAMES \
{"R0", "R1", "R2", "R3", "R4", "FP", "SP", "PC", \
"AC0", "AC1", "AC2", "AC3", "AC4", "AC5" }

/* How to renumber registers for dbx and gdb. */

#define DBX_REGISTER_NUMBER(REGNO) (REGNO)

/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */

#define ASM_OUTPUT_LABEL(FILE,NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)

/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */

#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs("\n", FILE); } while (0)

/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */

#define ASM_OUTPUT_LABELREF(FILE,NAME) \
fprintf (FILE, "_%s", NAME)

/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */

#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
fprintf (FILE, "%s_%d:\n", PREFIX, NUM)

/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */

#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf (LABEL, "*%s_%d", PREFIX, NUM)

/* This is how to output an assembler line defining a `double' constant. */

#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
fprintf (FILE, "\tdouble %.20e\n", (VALUE))

/* This is how to output an assembler line defining a `float' constant. */

#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
fprintf (FILE, "\tfloat %.12e\n", (VALUE))

/* This is how to output an assembler line defining an `int' constant. */

#define ASM_OUTPUT_INT(FILE,VALUE) \
( fprintf (FILE, "\t.word "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))

/* Likewise for `short' and `char' constants. */

#define ASM_OUTPUT_SHORT(FILE,VALUE) \
( fprintf (FILE, "\t.word "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, " /*short*/\n"))

#define ASM_OUTPUT_CHAR(FILE,VALUE) \
( fprintf (FILE, "\t.byte "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, " /* char */\n"))

/* This is how to output an assembler line for a numeric constant byte.-

do we really NEED it ? let's output it with a comment and grep the
assembly source ;-)
*/

#define ASM_OUTPUT_BYTE(FILE,VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))

#define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
output_ascii (FILE, P, SIZE)

#define ASM_OUTPUT_ADDR_VEC_PROLOGUE(FILE, MODE, LEN) \
fprintf (FILE, "\t/* HELP! */\n");

/* This is how to output an element of a case-vector that is absolute. */

#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "\t.word L_%d\n", VALUE)

/* This is how to output an element of a case-vector that is relative.
(the pdp does not use such vectors,
but we must define this macro anyway.) */

#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\tERROR @L%d-@L%d ! error should not be used\n", VALUE, REL)

/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes.

who needs this????
*/

#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", 1<<(LOG))

#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.=.+ %d\n", (SIZE))

/* This says how to output an assembler line
to define a global common symbol. */

#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( fprintf ((FILE), ".globl "), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), "\n"), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ": .=.+ %d\n", (ROUNDED)) \
)

/* This says how to output an assembler line
to define a local common symbol. */

#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
( assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ":\t.=.+ %d\n", (ROUNDED)))

/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */

#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))

/* Define the parentheses used to group arithmetic operations
in assembler code. */

#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"

/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015

/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null.

*/


#define PRINT_OPERAND(FILE, X, CODE) \
{ if (CODE == '#') fprintf (FILE, "#"); \
else if (GET_CODE (X) == REG) \
fprintf (FILE, "%s", reg_names[REGNO (X)]); \
else if (GET_CODE (X) == MEM) \
output_address (XEXP (X, 0)); \
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != SImode) \
{ union { double d; int i[2]; } u; \
u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
fprintf (FILE, "#%.20e", u.d); } \
else { putc ('$', FILE); output_addr_const (FILE, X); }}

/* Print a memory address as an operand to reference that memory location. */

#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
print_operand_address (FILE, ADDR)

#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
( \
fprintf (FILE, "\tmov %s, -(sp)\n", reg_names[REGNO]) \
)

#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
( \
fprintf (FILE, "\tmov (sp)+, %s\n", reg_names[REGNO]) \
)


#define ASM_IDENTIFY_GCC(FILE) \
fprintf(FILE, "gcc_compiled:\n")

#define ASM_OUTPUT_DOUBLE_INT(a,b) fprintf(a,"%d", b)

/* trampoline - how should i do it in separate i+d ? */
#define TRAMPOLINE_SIZE 0

#define INITIALIZE_TRAMPOLINE(x,y,z) \
{ \
abort(); \
}

#define TRAMPOLINE_TEMPLATE(FILE) \
{ \
abort(); \
}

/* Some machines may desire to change what optimizations are
performed for various optimization levels. This macro, if
defined, is executed once just after the optimization level is
determined and before the remainder of the command options have
been parsed. Values set in this macro are used as the default
values for the other command line options.

LEVEL is the optimization level specified; 2 if -O2 is
specified, 1 if -O is specified, and 0 if neither is specified. */

#define OPTIMIZATION_OPTIONS(LEVEL) \
{ \
if (LEVEL >= 3) \
{ \
flag_inline_functions = 1; \
flag_omit_frame_pointer = 1; \
} \
}


/* Provide the costs of a rtl expression. This is in the body of a
switch on CODE.

we don't say how expensive SImode is - pretty expensive!!!

there is something wrong in MULT because MULT is not
as cheap as total = 2 even if we can shift!

if TARGET_SPACE make mult etc cheap, but not 1, so when
in doubt the faster insn is chosen.
*/

#define RTX_COSTS(X,CODE) \
case MULT: \
if (TARGET_SPACE) \
total = COSTS_N_INSNS(2); \
else \
total = COSTS_N_INSNS (11); \
break; \
case DIV: \
if (TARGET_SPACE) \
total = COSTS_N_INSNS(2); \
else \
total = COSTS_N_INSNS (25); \
break; \
case MOD: \
if (TARGET_SPACE) \
total = COSTS_N_INSNS(2); \
else \
total = COSTS_N_INSNS (26); \
break; \
case ABS: \
/* equivalent to length, so same for TARGET_SPACE */ \
total = COSTS_N_INSNS (3); \
break; \
case ZERO_EXTEND: \
/* only used for: qi->hi */ \
total = COSTS_N_INSNS(1); \
break; \
case SIGN_EXTEND: \
if (GET_MODE(X) == HImode) \
total = COSTS_N_INSNS(1); \
else if (GET_MODE(X) == SImode) \
total = COSTS_N_INSNS(6); \
else \
abort(); \
break; \
case LSHIFT: \
case ASHIFT: \
case LSHIFTRT: \
case ASHIFTRT: \
if (TARGET_SPACE) \
total = COSTS_N_INSNS(1); \
else if (GET_MODE(X) == QImode) \
{ \
if (GET_CODE(XEXP (X,1)) != CONST_INT) \
abort(); \
total = COSTS_N_INSNS(INTVAL(XEXP (X,1))); \
} \
else if (GET_MODE(X) == HImode) \
{ \
if (GET_CODE(XEXP (X,1)) == CONST_INT) \
{ \
if (abs (INTVAL (XEXP (X, 1))) == 1) \
total = COSTS_N_INSNS(1); \
else \
total = COSTS_N_INSNS(2.5 + 0.5 *INTVAL(XEXP(X,1))); \
} \
else /* worst case */ \
total = COSTS_N_INSNS (10); \
} \
else if (GET_MODE(X) == SImode) \
{ \
if (GET_CODE(XEXP (X,1)) == CONST_INT) \
total = COSTS_N_INSNS(2.5 + 0.5 *INTVAL(XEXP(X,1))); \
else /* worst case */ \
total = COSTS_N_INSNS(18); \
} \
break;


/* there is no point in avoiding branches on a pdp,
since branches are really cheap - I just want to find out
how much difference the BRANCH_COST macro makes in code */
#define BRANCH_COST (TARGET_BRANCH_CHEAP ? 0 : 1)

@EOF

chmod 644 config/pdp.h

echo x - config/xm-pdp.h
cat >config/xm-pdp.h <<'@EOF'
/* Configuration for GNU C-compiler for pdp-11 family.
Copyright (C) 1991 Free Software Foundation, Inc.
Contributed by Michael K. Gschwind (mi...@vlsivie.tuwien.ac.at)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.

*/

/* ???? */
/* xm is if you want to run gcc here ??? */
/* too big !!! */

#error YOU LOSE! Gcc cannot run on a pdp-11 due to size problems!


@EOF

chmod 644 config/xm-pdp.h

echo x - config/pdp.md
cat >config/pdp.md <<'@EOF'
;;- Machine description for the pdp11 for GNU C compiler
;; Copyright (C) 1991 Free Software Foundation, Inc.
;; Contributed by Michael K. Gschwind (mi...@vlsivie.tuwien.ac.at)

;; This file is part of GNU CC.

;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 1, or (at your option)
;; any later version.

;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.


;; HI is 16 bit
;; QI is 8 bit

;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.

;;- cpp macro #define NOTICE_UPDATE_CC in file tm.h handles condition code
;;- updates for most instructions.

;;- Operand classes for the register allocator:

;; Compare instructions.

;; currently we only support df floats, which saves us quite some
;; hassle switching the FP mode!
;; we assume that CPU is always in long float mode, and
;; 16 bit integer mode - currently, the prologue for main does this,
;; but maybe we should just set up a NEW crt0 properly,
;; -- and what about signal handling code?
;; (we don't even let sf floats in the register file, so
;; we only should have to worry about truncating and widening
;; when going to memory)

;; abort() call by g++ - must define libfunc for cmp_optab
;; and ucmp_optab for mode SImode, because we don't have that!!!
;; - yet since no libfunc is there, we abort ()

;; The only thing that remains to be done then is output
;; the floats in a way the assembler can handle it (and
;; if you're really into it, use a PDP11 float emulation
;; libary to do floating point constant folding - but
;; I guess you'll get reasonable results even when not
;; doing this)
;; the last thing to do is fix the UPDATE_CC macro to check
;; for floating point condition codes, and set cc_status
;; properly, also setting the CC_IN_FCCR flag.

;; define attributes
;; currently type is only fpu or arith or unknown, maybe branch later ?
;; default is arith
(define_attr "type" "unknown,arith,fp" (const_string "arith"))

;; length default is 1 word each
(define_attr "length" "" (const_int 1))

;; a users asm staement
(define_asm_attributes
[(set_attr "type" "unknown")
; all bets are off how long it is - make it 256, forces long jumps
; whenever jumping around it !!!
(set_attr "length" "256")])

;; define function units

;; arithmetic - values here immediately when next insn issued
;; or does it mean the number of cycles after this insn was issued?
;; how do I say that fpu insns use cpu also? (pre-interaction phase)

;(define_function_unit "cpu" 1 1 (eq_attr "type" "arith") 0 0)
;(define_function_unit "fpu" 1 1 (eq_attr "type" "fp") 0 0)

;; compare
(define_insn "cmpdf"
[(set (cc0)
(compare (match_operand:DF 0 "general_operand" "fR,Q,F")
(match_operand:DF 1 "register_operand" "a,a,a")))]
"TARGET_FPU"
"*
{
cc_status.flags = CC_IN_FPU;
return \"cmpd %0, %1\;cfcc\";
}"
[(set_attr "length" "2,3,6")])

;; a bit of brain damage, maybe inline later -
;; problem is - gcc seems to NEED SImode because
;; of the cmp weirdness - maybe change gcc to handle this?

(define_expand "cmpsi"
[(set (reg:SI 0)
(match_operand:SI 0 "general_operand" "g"))
(set (reg:SI 2)
(match_operand:SI 1 "general_operand" "g"))
(parallel [(set (cc0)
(compare (reg:SI 0)
(reg:SI 2)))
(clobber (reg:SI 0))])]
""
"")

;; check for next insn for branch code - does this still
;; work in gcc 2.* ?

(define_insn ""
[(set (cc0)
(compare (reg:SI 0)
(reg:SI 2)))
(clobber (reg:SI 0))]
""
"*
{
rtx br_insn = NEXT_INSN (insn);
RTX_CODE br_code;

if (GET_CODE (br_insn) != JUMP_INSN)
abort();
br_code = GET_CODE (XEXP (XEXP (PATTERN (br_insn), 1), 0));

switch(br_code)
{
case GEU:
case LTU:
case GTU:
case LEU:

return \"jsr pc, ___ucmpsi\;cmp $1,r0\";

case GE:
case LT:
case GT:
case LE:
case EQ:
case NE:

return \"jsr pc, ___cmpsi\;tst r0\";

default:

abort();
}
}"
[(set_attr "length" "4")])


(define_insn "cmphi"
[(set (cc0)
(compare (match_operand:HI 0 "general_operand" "rR,rR,Qi,Qi")
(match_operand:HI 1 "general_operand" "rR,Qi,rR,Qi")))]
""
"cmp %0,%1"
[(set_attr "length" "1,2,2,3")])

(define_insn "cmpqi"
[(set (cc0)
(compare (match_operand:QI 0 "general_operand" "rR,rR,Qi,Qi")
(match_operand:QI 1 "general_operand" "rR,Qi,rR,Qi")))]
""
"cmpb %0,%1"
[(set_attr "length" "1,2,2,3")])

;; We have to have this because cse can optimize the previous pattern
;; into this one.

(define_insn "tstdf"
[(set (cc0)
(match_operand:DF 0 "general_operand" "fR,Q"))]
"TARGET_FPU"
"*
{
cc_status.flags = CC_IN_FPU;
return \"tstd %0\;cfcc\";
}"
[(set_attr "length" "2,3")])


(define_expand "tstsi"
[(set (reg:SI 0)
(match_operand:SI 0 "general_operand" "g"))
(parallel [(set (cc0)
(reg:SI 0))
(clobber (reg:SI 0))])]
""
"")

(define_insn ""
[(set (cc0)
(reg:SI 0))
(clobber (reg:SI 0))]
""
"jsr pc, ___tstsi\;tst r0"
[(set_attr "length" "3")])


(define_insn "tsthi"
[(set (cc0)
(match_operand:HI 0 "general_operand" "rR,Q"))]
""
"tst %0"
[(set_attr "length" "1,2")])

(define_insn "tstqi"
[(set (cc0)
(match_operand:QI 0 "general_operand" "rR,Q"))]
""
"tstb %0"
[(set_attr "length" "1,2")])

;; sob instruction - we need an assembler which can make this instruction
;; valid under _all_ circumstances!

(define_insn ""
[(set (pc)
(if_then_else
(ne (plus:HI (match_operand:HI 0 "register_operand" "r")
(const_int -1))
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:HI (match_dup 0)
(const_int -1)))]
"TARGET_40_PLUS"
"*
{
static int labelcount = 0;
static char buf[1000];

if (get_attr_length (insn) == 1)
return \"sob %0, %l1\";

/* emulate sob */
output_asm_insn (\"dec %0\", operands);

sprintf (buf, \"bge LONG_SOB%d\", labelcount);
output_asm_insn (buf, NULL);

output_asm_insn (\"jmp %l1\", operands);

sprintf (buf, \"LONG_SOB%d:\", labelcount++);
output_asm_insn (buf, NULL);

return \"\";
}"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -256))
(ge (minus (match_dup 0)
(pc))
(const_int 0)))
(const_int 4)
(const_int 1)))])

;; These control RTL generation for conditional jump insns
;; and match them for register allocation.

;; problem with too short jump distance! we need an assembler which can
;; make this legal for all jump distances!
;; e.g. gas!

;; these must be changed to check for CC_IN_FCCR if float is to be
;; enabled

(define_insn "beq"
[(set (pc)
(if_then_else (eq (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"* return output_jump(\"beq\", \"bne\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])


(define_insn "bne"
[(set (pc)
(if_then_else (ne (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"* return output_jump(\"bne\", \"beq\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn "bgt"
[(set (pc)
(if_then_else (gt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"* return output_jump(\"bgt\", \"ble\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn "bgtu"
[(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"* return output_jump(\"bhi\", \"blos\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn "blt"
[(set (pc)
(if_then_else (lt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"* return output_jump(\"blt\", \"bge\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])


(define_insn "bltu"
[(set (pc)
(if_then_else (ltu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"* return output_jump(\"blo\", \"bhos\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn "bge"
[(set (pc)
(if_then_else (ge (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"* return output_jump(\"bge\", \"blt\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn "bgeu"
[(set (pc)
(if_then_else (geu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"* return output_jump(\"bhis\", \"blo\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn "ble"
[(set (pc)
(if_then_else (le (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"* return output_jump(\"ble\", \"bgt\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn "bleu"
[(set (pc)
(if_then_else (leu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"* return output_jump(\"blos\", \"bhi\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])


;; These match inverted jump insns for register allocation.

(define_insn ""
[(set (pc)
(if_then_else (eq (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"* return output_jump(\"bne\", \"beq\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn ""
[(set (pc)
(if_then_else (ne (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"* return output_jump(\"beq\", \"bne\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn ""
[(set (pc)
(if_then_else (gt (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"* return output_jump(\"ble\", \"bgt\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn ""
[(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"* return output_jump(\"blos\", \"bhi\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn ""
[(set (pc)
(if_then_else (lt (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"* return output_jump(\"bge\", \"blt\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn ""
[(set (pc)
(if_then_else (ltu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"* return output_jump(\"bhos\", \"blo\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn ""
[(set (pc)
(if_then_else (ge (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"* return output_jump(\"blt\", \"bge\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn ""
[(set (pc)
(if_then_else (geu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"* return output_jump(\"blo\", \"bhos\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn ""
[(set (pc)
(if_then_else (le (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"* return output_jump(\"bgt\", \"ble\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

(define_insn ""
[(set (pc)
(if_then_else (leu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"* return output_jump(\"bhi\", \"blos\", get_attr_length(insn));"
[(set (attr "length") (if_then_else (ior (le (minus (match_dup 0)
(pc))
(const_int -128))
(ge (minus (match_dup 0)
(pc))
(const_int 128)))
(const_int 3)
(const_int 1)))])

;; Move instructions

(define_insn "movdi"
[(set (match_operand:DI 0 "general_operand" "=g")
(match_operand:DI 1 "general_operand" "g"))]
""
"* return output_move_quad (operands);"
;; what's the mose expensive code - say twice movsi = 16
[(set_attr "length" "16")])

(define_insn "movsi"
[(set (match_operand:SI 0 "general_operand" "=r,r,r,rm,m")
(match_operand:SI 1 "general_operand" "rN,IJ,K,m,r"))]
""
"* return output_move_double (operands);"
;; what's the most expensive code ? - I think 8!
;; we could split it up and make several sub-cases...
[(set_attr "length" "2,3,4,8,8")])

(define_insn "movhi"
[(set (match_operand:HI 0 "general_operand" "=rR,rR,Q,Q")
(match_operand:HI 1 "general_operand" "rRN,Qi,rRN,Qi"))]
""
"*
{
if (operands[1] == const0_rtx)
return \"clr %0\";

return \"mov %1, %0\";
}"
[(set_attr "length" "1,2,2,3")])

(define_insn "movqi"
[(set (match_operand:QI 0 "general_operand" "=rR,rR,Q,Q")
(match_operand:QI 1 "general_operand" "rRN,Qi,rRN,Qi"))]
""
"*
{
if (operands[1] == const0_rtx)
return \"clrb %0\";

return \"movb %1, %0\";
}"
[(set_attr "length" "1,2,2,3")])

;; do we have to supply all these moves? e.g. to
;; NO_LOAD_FPU_REGs ?
(define_insn "movdf"
[(set (match_operand:DF 0 "general_operand" "=f,R,f,Q,f,m")
(match_operand:DF 1 "general_operand" "fR,f,Q,f,F,m"))]
""
"* return output_move_quad (operands);"
;; just a guess..
[(set_attr "length" "1,1,2,2,5,16")])

(define_insn "movsf"
[(set (match_operand:SF 0 "general_operand" "=g,r,g")
(match_operand:SF 1 "general_operand" "r,rmF,g"))]
"TARGET_FPU"
"* return output_move_double (operands);"
[(set_attr "length" "8,8,8")])

;; maybe fiddle a bit with move_ratio, then
;; let contraints only accept a register ...

(define_expand "movstrhi"
[(parallel [(set (mem:BLK (match_operand:BLK 0 "general_operand" "=g,g"))
(mem:BLK (match_operand:BLK 1 "general_operand" "g,g")))
(use (match_operand:HI 2 "arith_operand" "n,&mr"))
(use (match_operand:HI 3 "immediate_operand" "i,i"))
(clobber (match_scratch:HI 4 "=&r,X"))
(clobber (match_dup 0))
(clobber (match_dup 1))
(clobber (match_dup 2))])]
"(TARGET_BCOPY_BUILTIN)"
"
{
operands[0] = copy_to_mode_reg (Pmode, XEXP (operands[0], 0));
operands[1] = copy_to_mode_reg (Pmode, XEXP (operands[1], 0));
operands[2] = force_not_mem (operands[2]);
}")


(define_insn "" ; "movstrhi"
[(set (mem:BLK (match_operand:HI 0 "general_operand" "=r,r"))
(mem:BLK (match_operand:HI 1 "general_operand" "r,r")))
(use (match_operand:HI 2 "arith_operand" "n,&r"))
(use (match_operand:HI 3 "immediate_operand" "i,i"))
(clobber (match_scratch:HI 4 "=&r,X"))
(clobber (match_dup 0))
(clobber (match_dup 1))
(clobber (match_dup 2))]
"(TARGET_BCOPY_BUILTIN)"
"* return output_block_move (operands);"
;;; just a guess
[(set_attr "length" "40")])


;;- truncation instructions

(define_insn "truncdfsf2"
[(set (match_operand:SF 0 "memory_operand" "=R,Q")
(float_truncate:SF (match_operand:DF 1 "register_operand" "a,a")))]
"TARGET_FPU"
"stcdf %1, %0"
[(set_attr "length" "1,2")])

(define_expand "truncsihi2"
[(set (match_operand:HI 0 "general_operand" "=g")
(subreg:HI
(match_operand:SI 1 "general_operand" "or")
0))]
""
"")


;;- zero extension instructions

(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "general_operand" "=r")
(zero_extend:HI (match_operand:QI 1 "general_operand" "0")))]
""
"bic $(256*255), %0"
[(set_attr "length" "2")])

(define_expand "zero_extendhisi2"
[(set (subreg:HI
(match_dup 0)
0)
(match_operand:HI 1 "register_operand" "r"))
(set (subreg:HI
(match_operand:SI 0 "register_operand" "=r")
1)
(const_int 0))]
""
"/* operands[1] = make_safe_from (operands[1], operands[0]); */")


;;- sign extension instructions

(define_insn "extendsfdf2"
[(set (match_operand:DF 0 "register_operand" "=a,a")
(float_extend:SF (match_operand:SF 1 "memory_operand" "R,Q")))]
"TARGET_FPU"
"ldcfd %1, %0"
[(set_attr "length" "1,2")])

(define_insn "extendqihi2"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(sign_extend:HI (match_operand:QI 1 "general_operand" "rR,Q")))]
""
"movb %1, %0"
[(set_attr "length" "1,2")])

(define_insn "extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(sign_extend:SI (match_operand:QI 1 "general_operand" "rR,Q")))]
"TARGET_40_PLUS"
"*
{
rtx latehalf[2];

/* make register pair available */
latehalf[0] = operands[0];
operands[0] = gen_rtx(REG, HImode, REGNO (operands[0])+1);

output_asm_insn(\"movb %1, %0\", operands);
output_asm_insn(\"sxt %0\", latehalf);

return \"\";
}"
[(set_attr "length" "2,3")])

;; maybe we have to use define_expand to say that we have the instruction,
;; unconditionally, and then match dependent on CPU type:

(define_expand "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=g")
(sign_extend:SI (match_operand:HI 1 "general_operand" "g")))]
""
"")

(define_insn "" ; "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=o,<,r")
(sign_extend:SI (match_operand:HI 1 "general_operand" "g,g,g")))]
"TARGET_40_PLUS"
"*
{
rtx latehalf[2];

/* we don't want to mess with auto increment */

switch(which_alternative)
{
case 0:

latehalf[0] = operands[0];
operands[0] = adj_offsettable_operand(operands[0], 2);

output_asm_insn(\"mov %1, %0\", operands);
output_asm_insn(\"sxt %0\", latehalf);

return \"\";

case 1:

/* - auto-decrement - right direction ;-) */
output_asm_insn(\"mov %1, %0\", operands);
output_asm_insn(\"sxt %0\", operands);

return \"\";

case 2:

/* make register pair available */
latehalf[0] = operands[0];
operands[0] = gen_rtx(REG, HImode, REGNO (operands[0])+1);

output_asm_insn(\"mov %1, %0\", operands);
output_asm_insn(\"sxt %0\", latehalf);

return \"\";

default:

abort();
}
}"
[(set_attr "length" "5,3,3")])


(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:HI 1 "general_operand" "0")))]
"(! TARGET_40_PLUS)"
"*
{
static count = 0;
char buf[100];
rtx lateoperands[2];

lateoperands[0] = operands[0];
operands[0] = gen_rtx(REG, HImode, REGNO (operands[0])+1);

output_asm_insn(\"tst %0\", operands);
sprintf(buf, \"bge extendhisi%d\", count);
output_asm_insn(buf, NULL);
output_asm_insn(\"mov -1, %0\", lateoperands);
sprintf(buf, \"bne extendhisi%d\", count+1);
output_asm_insn(buf, NULL);
sprintf(buf, \"\\nextendhisi%d:\", count);
output_asm_insn(buf, NULL);
output_asm_insn(\"clr %0\", lateoperands);
sprintf(buf, \"\\nextendhisi%d:\", count+1);
output_asm_insn(buf, NULL);

count += 2;

return \"\";
}"
[(set_attr "length" "6")])

;; make float to int and vice versa
;; using the cc_status.flag field we coulf probably cut down
;; on seti and setl
;; assume that we are normally in double and integer mode -
;; what do pdp library routines do to fpu mode ?

(define_insn "floatsidf2"
[(set (match_operand:DF 0 "register_operand" "=a,a")
(float:DF (match_operand:SI 1 "memory_operand" "R,Q")))]
"TARGET_FPU"
"setl\;ldcld %1, %0\;seti"
[(set_attr "length" "3,4")])

(define_insn "floathidf2"
[(set (match_operand:DF 0 "register_operand" "=a,a")
(float:DF (match_operand:HI 1 "general_operand" "rR,Qi")))]
"TARGET_FPU"
"ldcid %1, %0"
[(set_attr "length" "1,2")])

;; cut float to int
(define_insn "fix_truncdfsi2"
[(set (match_operand:SI 0 "memory_operand" "=R,Q")
(fix:SI (fix:DF (match_operand:DF 1 "register_operand" "a,a"))))]
"TARGET_FPU"
"setl\;stcdl %1, %0\;seti"
[(set_attr "length" "3,4")])

(define_insn "fix_truncdfhi2"
[(set (match_operand:HI 0 "general_operand" "=rR,Q")
(fix:HI (fix:DF (match_operand:DF 1 "register_operand" "a,a"))))]
"TARGET_FPU"
"stcdi %1, %0"
[(set_attr "length" "1,2")])


;;- arithmetic instructions
;;- add instructions

(define_insn "adddf3"
[(set (match_operand:DF 0 "register_operand" "=a,a,a")
(plus:DF (match_operand:DF 1 "register_operand" "%0,0,0")
(match_operand:DF 2 "general_operand" "fR,Q,F")))]
"TARGET_FPU"
"addd %2, %0"
[(set_attr "length" "1,2,5")])

(define_insn "addsi3"
[(set (match_operand:SI 0 "general_operand" "=r,r,o,o,r,r,r,o,o,o")
(plus:SI (match_operand:SI 1 "general_operand" "%0,0,0,0,0,0,0,0,0,0")
(match_operand:SI 2 "general_operand" "r,o,r,o,I,J,K,I,J,K")))]
""
"*
{ /* Here we trust that operands don't overlap

or is lateoperands the low word?? - looks like it! */

unsigned int i;
rtx lateoperands[3];

lateoperands[0] = operands[0];

if (REG_P (operands[0]))
operands[0] = gen_rtx(REG, HImode, REGNO(operands[0]) + 1);
else
operands[0] = adj_offsettable_operand (operands[0], 2);

if (! CONSTANT_P(operands[2]))
{
lateoperands[2] = operands[2];

if (REG_P (operands[2]))
operands[2] = gen_rtx(REG, HImode, REGNO(operands[2]) + 1);
else
operands[2] = adj_offsettable_operand(operands[2], 2);

output_asm_insn (\"add %2, %0\", operands);
output_asm_insn (\"adc %0\", lateoperands);
output_asm_insn (\"add %2, %0\", lateoperands);
return \"\";
}

lateoperands[2] = gen_rtx(CONST_INT, VOIDmode, (INTVAL(operands[2]) >> 16) & 0xffff);
operands[2] = gen_rtx(CONST_INT, VOIDmode, INTVAL(operands[2]) & 0xffff);

if (INTVAL(operands[2]))
{
output_asm_insn (\"add %2, %0\", operands);
output_asm_insn (\"adc %0\", lateoperands);
}

if (INTVAL(lateoperands[2]))
output_asm_insn (\"add %2, %0\", lateoperands);

return \"\";
}"
[(set_attr "length" "3,5,6,8,3,1,5,5,3,8")])

(define_insn "addhi3"
[(set (match_operand:HI 0 "general_operand" "=rR,rR,Q,Q")
(plus:HI (match_operand:HI 1 "general_operand" "%0,0,0,0")
(match_operand:HI 2 "general_operand" "rRLM,Qi,rRLM,Qi")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT)
if (INTVAL(operands[2]) == 1)
return \"inc %0\";
else if (INTVAL(operands[2]) == -1)
return \"dec %0\";

return \"add %2, %0\";
}"
[(set_attr "length" "1,2,2,3")])

(define_insn "addqi3"
[(set (match_operand:QI 0 "general_operand" "=rR,rR,Q,Q")
(plus:QI (match_operand:QI 1 "general_operand" "%0,0,0,0")
(match_operand:QI 2 "general_operand" "rRLM,Qi,rRLM,Qi")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT)
if (INTVAL(operands[2]) == 1)
return \"incb %0\";
else if (INTVAL(operands[2]) == -1)
return \"decb %0\";

return \"addb %2, %0\";
}"
[(set_attr "length" "1,2,2,3")])


;;- subtract instructions
;; we don't have to care for constant second
;; args, since they are cononical plus:xx now!
;; also for minus:DF ??

(define_insn "subdf3"
[(set (match_operand:DF 0 "register_operand" "=a,a")
(minus:DF (match_operand:DF 1 "register_operand" "0,0")
(match_operand:DF 2 "general_operand" "fR,Q")))]
"TARGET_FPU"
"subd %2, %0"
[(set_attr "length" "1,2")])

(define_insn "subsi3"
[(set (match_operand:SI 0 "general_operand" "=r,r,o,o")
(minus:SI (match_operand:SI 1 "general_operand" "0,0,0,0")
(match_operand:SI 2 "general_operand" "r,o,r,o")))]
""
"*
{ /* Here we trust that operands don't overlap

or is lateoperands the low word?? - looks like it! */

unsigned int i;
rtx lateoperands[3];

lateoperands[0] = operands[0];

if (REG_P (operands[0]))
operands[0] = gen_rtx(REG, HImode, REGNO(operands[0]) + 1);
else
operands[0] = adj_offsettable_operand (operands[0], 2);

lateoperands[2] = operands[2];

if (REG_P (operands[2]))
operands[2] = gen_rtx(REG, HImode, REGNO(operands[2]) + 1);
else
operands[2] = adj_offsettable_operand(operands[2], 2);

output_asm_insn (\"sub %2, %0\", operands);
output_asm_insn (\"sbc %0\", lateoperands);
output_asm_insn (\"sub %2, %0\", lateoperands);
return \"\";
}"
;; offsetable memory addresses always are expensive!!!
[(set_attr "length" "3,5,6,8")])

(define_insn "subhi3"
[(set (match_operand:HI 0 "general_operand" "=rR,rR,Q,Q")
(minus:HI (match_operand:HI 1 "general_operand" "0,0,0,0")
(match_operand:HI 2 "general_operand" "rR,Qi,rR,Qi")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT)
abort();

return \"sub %2, %0\";
}"
[(set_attr "length" "1,2,2,3")])

(define_insn "subqi3"
[(set (match_operand:QI 0 "general_operand" "=rR,rR,Q,Q")
(minus:QI (match_operand:QI 1 "general_operand" "0,0,0,0")
(match_operand:QI 2 "general_operand" "rR,Qi,rR,Qi")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT)
abort();

return \"subb %2, %0\";
}"
[(set_attr "length" "1,2,2,3")])

;;;;- and instructions
;; Bit-and on the pdp (like on the vax) is done with a clear-bits insn.
(define_expand "andsi3"
[(set (match_operand:SI 0 "general_operand" "=g")
(and:SI (match_operand:SI 1 "general_operand" "0")
(not:SI (match_operand:SI 2 "general_operand" "g"))))]
""
"
{
extern rtx expand_unop ();
if (GET_CODE (operands[2]) == CONST_INT)
operands[2] = gen_rtx (CONST_INT, VOIDmode, ~INTVAL (operands[2]));
else
operands[2] = expand_unop (SImode, one_cmpl_optab, operands[2], 0, 1);
}")

(define_expand "andhi3"
[(set (match_operand:HI 0 "general_operand" "=g")
(and:HI (match_operand:HI 1 "general_operand" "0")
(not:HI (match_operand:HI 2 "general_operand" "g"))))]
""
"
{
extern rtx expand_unop ();
if (GET_CODE (operands[2]) == CONST_INT)
operands[2] = gen_rtx (CONST_INT, VOIDmode, ~INTVAL (operands[2]));
else
operands[2] = expand_unop (HImode, one_cmpl_optab, operands[2], 0, 1);
}")

(define_expand "andqi3"
[(set (match_operand:QI 0 "general_operand" "=g")
(and:QI (match_operand:QI 1 "general_operand" "0")
(not:QI (match_operand:QI 2 "general_operand" "g"))))]
""
"
{
extern rtx expand_unop ();
rtx op = operands[2];
if (GET_CODE (op) == CONST_INT)
operands[2] = gen_rtx (CONST_INT, VOIDmode,
((1 << 8) - 1) & ~INTVAL (op));
else
operands[2] = expand_unop (QImode, one_cmpl_optab, op, 0, 1);
}")

(define_insn "andcbsi3"
[(set (match_operand:SI 0 "general_operand" "=r,r,o,o,r,r,r,o,o,o")
(and:SI (match_operand:SI 1 "general_operand" "%0,0,0,0,0,0,0,0,0,0")
(not:SI (match_operand:SI 2 "general_operand" "r,o,r,o,I,J,K,I,J,K"))))]
""
"*
{ /* Here we trust that operands don't overlap

or is lateoperands the low word?? - looks like it! */

unsigned int i;
rtx lateoperands[3];

lateoperands[0] = operands[0];

if (REG_P (operands[0]))
operands[0] = gen_rtx(REG, HImode, REGNO(operands[0]) + 1);
else
operands[0] = adj_offsettable_operand (operands[0], 2);

if (! CONSTANT_P(operands[2]))
{
lateoperands[2] = operands[2];

if (REG_P (operands[2]))
operands[2] = gen_rtx(REG, HImode, REGNO(operands[2]) + 1);
else
operands[2] = adj_offsettable_operand(operands[2], 2);

output_asm_insn (\"bic %2, %0\", operands);
output_asm_insn (\"bic %2, %0\", lateoperands);
return \"\";
}

lateoperands[2] = gen_rtx(CONST_INT, VOIDmode, (INTVAL(operands[2]) >> 16) & 0xffff);
operands[2] = gen_rtx(CONST_INT, VOIDmode, INTVAL(operands[2]) & 0xffff);

/* these have different lengths, so we should have
different constraints! */
if (INTVAL(operands[2]))
output_asm_insn (\"bic %2, %0\", operands);

if (INTVAL(lateoperands[2]))
output_asm_insn (\"bic %2, %0\", lateoperands);

return \"\";
}"
[(set_attr "length" "2,4,4,6,2,2,4,3,3,6")])

(define_insn "andcbhi3"
[(set (match_operand:HI 0 "general_operand" "=rR,rR,Q,Q")
(and:HI (match_operand:HI 1 "general_operand" "0,0,0,0")
(not:HI (match_operand:HI 2 "general_operand" "rR,Qi,rR,Qi"))))]
""
"bic %2, %0"
[(set_attr "length" "1,2,2,3")])

(define_insn "andcbqi3"
[(set (match_operand:QI 0 "general_operand" "=rR,rR,Q,Q")
(and:QI (match_operand:QI 1 "general_operand" "0,0,0,0")
(not:QI (match_operand:QI 2 "general_operand" "rR,Qi,rR,Qi"))))]
""
"bicb %2, %0"
[(set_attr "length" "1,2,2,3")])

;;- Bit set (inclusive or) instructions
(define_insn "iorsi3"
[(set (match_operand:SI 0 "general_operand" "=r,r,o,o,r,r,r,o,o,o")
(ior:SI (match_operand:SI 1 "general_operand" "%0,0,0,0,0,0,0,0,0,0")
(match_operand:SI 2 "general_operand" "r,o,r,o,I,J,K,I,J,K")))]
""
"*
{ /* Here we trust that operands don't overlap

or is lateoperands the low word?? - looks like it! */

unsigned int i;
rtx lateoperands[3];

lateoperands[0] = operands[0];

if (REG_P (operands[0]))
operands[0] = gen_rtx(REG, HImode, REGNO(operands[0]) + 1);
else
operands[0] = adj_offsettable_operand (operands[0], 2);

if (! CONSTANT_P(operands[2]))
{
lateoperands[2] = operands[2];

if (REG_P (operands[2]))
operands[2] = gen_rtx(REG, HImode, REGNO(operands[2]) + 1);
else
operands[2] = adj_offsettable_operand(operands[2], 2);

output_asm_insn (\"bis %2, %0\", operands);
output_asm_insn (\"bis %2, %0\", lateoperands);
return \"\";
}

lateoperands[2] = gen_rtx(CONST_INT, VOIDmode, (INTVAL(operands[2]) >> 16) & 0xffff);
operands[2] = gen_rtx(CONST_INT, VOIDmode, INTVAL(operands[2]) & 0xffff);

/* these have different lengths, so we should have
different constraints! */
if (INTVAL(operands[2]))
output_asm_insn (\"bis %2, %0\", operands);

if (INTVAL(lateoperands[2]))
output_asm_insn (\"bis %2, %0\", lateoperands);

return \"\";
}"
[(set_attr "length" "2,4,4,6,2,2,4,3,3,6")])

(define_insn "iorhi3"
[(set (match_operand:HI 0 "general_operand" "=rR,rR,Q,Q")
(ior:HI (match_operand:HI 1 "general_operand" "%0,0,0,0")
(match_operand:HI 2 "general_operand" "rR,Qi,rR,Qi")))]
""
"bis %2, %0"
[(set_attr "length" "1,2,2,3")])

(define_insn "iorqi3"
[(set (match_operand:QI 0 "general_operand" "=rR,rR,Q,Q")
(ior:QI (match_operand:QI 1 "general_operand" "%0,0,0,0")
(match_operand:QI 2 "general_operand" "rR,Qi,rR,Qi")))]
""
"bisb %2, %0")

;;- xor instructions
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
(xor:SI (match_operand:SI 1 "register_operand" "%0,0,0,0")
(match_operand:SI 2 "arith_operand" "r,I,J,K")))]
"TARGET_40_PLUS"
"*
{ /* Here we trust that operands don't overlap */

unsigned int i;
rtx lateoperands[3];

lateoperands[0] = operands[0];
operands[0] = gen_rtx(REG, HImode, REGNO(operands[0]) + 1);

if (REG_P(operands[2]))
{
lateoperands[2] = operands[2];
operands[2] = gen_rtx(REG, HImode, REGNO(operands[2]) + 1);

output_asm_insn (\"xor %2, %0\", operands);
output_asm_insn (\"xor %2, %0\", lateoperands);

return \"\";
}

lateoperands[2] = gen_rtx(CONST_INT, VOIDmode, (INTVAL(operands[2]) >> 16) & 0xffff);
operands[2] = gen_rtx(CONST_INT, VOIDmode, INTVAL(operands[2]) & 0xffff);

if (INTVAL(operands[2]))
output_asm_insn (\"xor %2, %0\", operands);

if (INTVAL(lateoperands[2]))
output_asm_insn (\"xor %2, %0\", lateoperands);

return \"\";
}"
[(set_attr "length" "2,1,1,2")])

(define_insn "xorhi3"
[(set (match_operand:HI 0 "general_operand" "=rR,Q")
(xor:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "register_operand" "r,r")))]
"TARGET_40_PLUS"
"xor %2, %0"
[(set_attr "length" "1,2")])

;;- one complement instructions

(define_insn "one_cmplhi2"
[(set (match_operand:HI 0 "general_operand" "=rR,Q")
(not:HI (match_operand:HI 1 "general_operand" "0,0")))]
""
"com %0"
[(set_attr "length" "1,2")])

(define_insn "one_cmplqi2"
[(set (match_operand:QI 0 "general_operand" "=rR,Q")
(not:QI (match_operand:QI 1 "general_operand" "0,0")))]
""
"comb %0"
[(set_attr "length" "1,2")])

;;- arithmetic shift instructions
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(ashift:SI (match_operand:SI 1 "register_operand" "0,0")
(match_operand:HI 2 "general_operand" "rR,Qi")))]
"TARGET_45"
"ashc %2,%0"
[(set_attr "length" "1,2")])

;; Arithmetic right shift on the pdp works by negating the shift count.
(define_expand "ashrsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(ashift:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:HI 2 "general_operand" "g")))]
""
"
{
operands[2] = negate_rtx (HImode, operands[2]);
}")

;; define asl aslb asr asrb - ashc missing!

;; asl
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=rR,Q")
(ashift:HI (match_operand:HI 1 "general_operand" "0,0")
(const_int 1)))]
""
"asl %0"
[(set_attr "length" "1,2")])

;; and another possibility for asr is << -1
;; might cause problems since -1 can also be encoded as 65535!
;; not in gcc2 ???

;; asr
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=rR,Q")
(ashift:HI (match_operand:HI 1 "general_operand" "0,0")
(const_int -1)))]
""
"asr %0"
[(set_attr "length" "1,2")])

;; shift is by arbitrary count is expensive,
;; shift by one cheap - so let's do that, if
;; space doesn't matter
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=r")
(ashift:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "expand_shift_operand" "O")))]
"TARGET_TIME"
"*
{
register int i;

for (i = 1; i <= abs(INTVAL(operands[2])); i++)
if (INTVAL(operands[2]) < 0)
output_asm_insn(\"asr %0\", operands);
else
output_asm_insn(\"asl %0\", operands);

return \"\";
}"
;; longest is 4
[(set (attr "length") (const_int 4))])

;; aslb
(define_insn ""
[(set (match_operand:QI 0 "general_operand" "=r,o")
(ashift:QI (match_operand:QI 1 "general_operand" "0,0")
(match_operand:HI 2 "const_immediate_operand" "n,n")))]
""
"*
{ /* allowing predec or post_inc is possible, but hairy! */
int i, cnt;

cnt = INTVAL(operands[2]) & 0x0007;

for (i=0 ; i < cnt ; i++)
output_asm_insn(\"aslb %0\", operands);

return \"\";
}"
;; set attribute length ( match_dup 2 & 7 ) *(1 or 2) !!!
[(set_attr_alternative "length"
[(const_int 7)
(const_int 14)])])

;;; asr
;(define_insn ""
; [(set (match_operand:HI 0 "general_operand" "=rR,Q")
; (ashiftrt:HI (match_operand:HI 1 "general_operand" "0,0")
; (const_int 1)))]
; ""
; "asr %0"
; [(set_attr "length" "1,2")])

;; asrb
(define_insn ""
[(set (match_operand:QI 0 "general_operand" "=r,o")
(ashiftrt:QI (match_operand:QI 1 "general_operand" "0,0")
(match_operand:HI 2 "const_immediate_operand" "n,n")))]
""
"*
{ /* allowing predec or post_inc is possible, but hairy! */
int i, cnt;

cnt = INTVAL(operands[2]) & 0x0007;

for (i=0 ; i < cnt ; i++)
output_asm_insn(\"asrb %0\", operands);

return \"\";
}"
[(set_attr_alternative "length"
[(const_int 7)
(const_int 14)])])

;; the following is illegal - too complex!!! - just say 14 !!!
; [(set (attr "length") (plus (and (match_dup 2)
; (const_int 7))
; (and (match_dup 2)
; (const_int 7))))])

;; can we get +-1 in the next pattern? should
;; have been caught by previous patterns!

(define_insn "ashlhi3"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(ashift:HI (match_operand:HI 1 "register_operand" "0,0")
(match_operand:HI 2 "general_operand" "rR,Qi")))]
""
"*
{
if (GET_CODE(operands[2]) == CONST_INT)
if (INTVAL(operands[2]) == 1)
return \"asl %0\";
else if (INTVAL(operands[2]) == -1)
return \"asr %0\";

return \"ash %2,%0\";
}"
[(set_attr "length" "1,2")])

;; Arithmetic right shift on the pdp works by negating the shift count.
(define_expand "ashrhi3"
[(set (match_operand:HI 0 "register_operand" "=r")
(ashift:HI (match_operand:HI 1 "register_operand" "0")
(match_operand:HI 2 "general_operand" "g")))]
""
"
{
operands[2] = negate_rtx (HImode, operands[2]);
}")

;;;;- logical shift instructions
;;(define_insn "lshrsi3"
;; [(set (match_operand:HI 0 "register_operand" "=r")
;; (lshiftrt:HI (match_operand:HI 1 "register_operand" "0")
;; (match_operand:HI 2 "arith_operand" "rI")))]
;; ""
;; "***")

;; absolute

(define_insn "absdf2"
[(set (match_operand:DF 0 "general_operand" "=fR,Q")
(abs:DF (match_operand:DF 1 "general_operand" "0,0")))]
"TARGET_FPU"
"absd %0"
[(set_attr "length" "1,2")])

(define_insn "abshi2"
[(set (match_operand:HI 0 "general_operand" "=r,o")
(abs:HI (match_operand:HI 1 "general_operand" "0,0")))]
"TARGET_ABSHI_BUILTIN"
"*
{
static count = 0;
char buf[200];

output_asm_insn(\"tst %0\", operands);
sprintf(buf, \"bge abshi%d\", count);
output_asm_insn(buf, NULL);
output_asm_insn(\"neg %0\", operands);
sprintf(buf, \"\\nabshi%d:\", count++);
output_asm_insn(buf, NULL);

return \"\";
}"
[(set_attr "length" "3,5")])


;; define expand abshi - is much better !!! - but
;; will it be optimized into an abshi2 ?
;; it will leave better code, because the tsthi might be
;; optimized away!!
; -- just a thought - don't have time to check
;
;(define_expand "abshi2"
; [(match_operand:HI 0 "general_operand" "")
; (match_operand:HI 1 "general_operand" "")]
; ""
; "
;{
; rtx label = gen_label_rtx ();
;
; /* do I need this? */
; do_pending_stack_adjust ();
;
; emit_move_insn (operands[0], operands[1]);
;
; emit_insn (gen_tsthi (operands[0]));
; emit_insn (gen_bge (label1));
;
; emit_insn (gen_neghi(operands[0], operands[0])
;
; emit_barrier ();
;
; emit_label (label);
;
; /* allow REG_NOTES to be set on last insn (labels don't have enough
; fields, and can't be used for REG_NOTES anyway). */
; emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx));
; DONE;
;}")

;; negate insns

(define_insn "negdf2"
[(set (match_operand:DF 0 "general_operand" "=fR,Q")
(neg:DF (match_operand:DF 1 "register_operand" "0,0")))]
"TARGET_FPU"
"negd %0"
[(set_attr "length" "1,2")])

(define_insn "neghi2"
[(set (match_operand:HI 0 "general_operand" "=rR,Q")
(neg:HI (match_operand:HI 1 "general_operand" "0,0")))]
""
"neg %0"
[(set_attr "length" "1,2")])

(define_insn "negqi2"
[(set (match_operand:QI 0 "general_operand" "=rR,Q")
(neg:QI (match_operand:QI 1 "general_operand" "0,0")))]
""
"negb %0"
[(set_attr "length" "1,2")])


;; Unconditional and other jump instructions
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"jmp %l0"
[(set_attr "length" "2")])

(define_insn ""
[(set (pc)
(label_ref (match_operand 0 "" "")))
(clobber (const_int 1))]
""
"jmp %l0"
[(set_attr "length" "2")])

(define_insn "tablejump"
[(set (pc) (match_operand:HI 0 "general_operand" "rR,Q"))
(use (label_ref (match_operand 1 "" "")))]
""
"jmp %0"
[(set_attr "length" "1,2")])

;; indirect jump - let's be conservative!
;; allow only register_operand, even though we could also
;; allow labels etc.

(define_insn "indirect_jump"
[(set (pc) (match_operand:HI 0 "register_operand" "r"))]
""
"jmp (%0)")

;;- jump to subroutine

(define_insn "call"
[(call (match_operand:HI 0 "general_operand" "R,Q")
(match_operand:HI 1 "general_operand" "g,g"))
;; (use (reg:HI 0)) what was that ???
]
;;- Don't use operand 1 for most machines.
""
"jsr pc, %0"
[(set_attr "length" "1,2")])

;;- jump to subroutine
(define_insn "call_value"
[(set (match_operand 0 "" "")
(call (match_operand:HI 1 "general_operand" "R,Q")
(match_operand:HI 2 "general_operand" "g,g")))
;; (use (reg:HI 0)) - what was that ????
]
;;- Don't use operand 2 for most machines.
""
"jsr pc, %1"
[(set_attr "length" "1,2")])

;;- nop instruction
(define_insn "nop"
[(const_int 0)]
""
"nop")

;;- multiply

(define_insn "muldf3"
[(set (match_operand:DF 0 "register_operand" "=a,a,a")
(mult:DF (match_operand:DF 1 "register_operand" "%0,0,0")
(match_operand:DF 2 "general_operand" "fR,Q,F")))]
"TARGET_FPU"
"muld %2, %0"
[(set_attr "length" "1,2,5")])

;; 16 bit result multiply:
;; currently we multiply only into odd registers, so we don't use two
;; registers - but this is a bit inefficient at times. If we define
;; a register class for each register, then we can specify properly
;; which register need which scratch register ....

(define_insn "mulhi3"
[(set (match_operand:HI 0 "register_operand" "=d,d") ; multiply regs
(mult:HI (match_operand:HI 1 "register_operand" "%0,0")
(match_operand:HI 2 "general_operand" "rR,Qi")))]
"TARGET_45"
"mul %2, %0"
[(set_attr "length" "1,2")])

;; 32 bit result
(define_insn "mulhisi3"
[(set (match_operand:SI 0 "register_operand" "=r,r") ; even numbered!
(mult:SI (match_operand:HI 1 "register_operand" "%0,0")
(match_operand:HI 2 "general_operand" "rR,Qi")))]
"TARGET_45"
"mul %2, %0"
[(set_attr "length" "1,2")])

;;- divide
;; how can I use the remainder ? -
;; modsidi and move upper register to lower ????

(define_insn "divdf3"
[(set (match_operand:DF 0 "register_operand" "=a,a,a")
(div:DF (match_operand:DF 1 "register_operand" "0,0,0")
(match_operand:DF 2 "general_operand" "fR,Q,F")))]
"TARGET_FPU"
"divd %2, %0"
[(set_attr "length" "1,2,5")])

(define_insn "divsihi3"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(div:HI (match_operand:SI 1 "register_operand" "0,0")
(match_operand:HI 2 "general_operand" "rR,Qi")))]
"TARGET_45"
"div %2,%0"
[(set_attr "length" "1,2")])

(define_expand "modsihi3"
[(set (match_operand:HI 0 "general_operand" "=g")
(mod:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:HI 2 "general_operand" "g")))
(clobber (match_dup 3))]
"TARGET_45"
"operands[4] = gen_reg_rtx (HImode);")

(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=g")
(mod:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:HI 2 "general_operand" "g")))
(clobber (match_operand:SI 3 "register_operand" "=r"))]
"TARGET_45"
"*
{
rtx help[2];

help[0] = copy_rtx (operands[3]);
help[1] = copy_rtx (operands[1]);

output_move_double(help);

output_asm_insn (\"div %2, %3\", operands);

help[0] = operands[0];
help[1] = gen_rtx (REG, HImode, REGNO(operands[3])+1);

output_asm_insn (\"mov %1, %0\", help);

return \"\";
}"
;; too lazy to figure out cost right now - give some upper bound!
[(set_attr "length" "8")])

;; is rotate doing the right thing to be included here ????

;;- Local variables:
;;- mode:emacs-lisp
;;- comment-start: ";;- "
;;- eval: (set-syntax-table (copy-sequence (syntax-table)))
;;- eval: (modify-syntax-entry ?[ "(]")
;;- eval: (modify-syntax-entry ?] ")[")
;;- eval: (modify-syntax-entry ?{ "(}")
;;- eval: (modify-syntax-entry ?} "){")
;;- End:
@EOF

chmod 644 config/pdp.md

exit 0

pat_b...@transarc.com

unread,
Mar 30, 1992, 11:20:40 AM3/30/92
to
A message sent to INFO-PDP11 recently contained some modifications to
GCC 2.1 to generate PDP-11 code. A lot of people didn't receive this
message, because it was bigger than their mailers could handle.

If you would like a copy of the PDP-11 GCC patches, please let me
know, and I'll make sure you get them.

--Pat.
(your friendly neighborhood list maintainer)

0 new messages