The old Google Groups will be going away soon, but your browser is incompatible with the new version.
Message from discussion Perfect Square

Received: by 10.180.86.97 with SMTP id o1mr1621761wiz.2.1351458471831;
Sun, 28 Oct 2012 14:07:51 -0700 (PDT)
From: Helmut Richter <hh...@web.de>
Newsgroups: sci.math
Subject: Re: Perfect Square
Date: Sun, 28 Oct 2012 22:07:51 +0100
Organization: Technische Universitaet Muenchen, Germany
Lines: 45
References: <Pine.NEB.4.64.1210271917290.24867@panix2.panix.com> <Pine.NEB.4.64.1210272020280.19820@panix2.panix.com>
Mime-Version: 1.0
X-Trace: news.in.tum.de 1351458471 25633 129.187.12.176 (28 Oct 2012 21:07:51 GMT)
X-Complaints-To: usenet@in.tum.de
NNTP-Posting-Date: Sun, 28 Oct 2012 21:07:51 +0000 (UTC)
User-Agent: Alpine 2.00 (LNX 1167 2008-08-23)
Content-Type: TEXT/PLAIN; charset=US-ASCII

On Sat, 27 Oct 2012, William Elliot wrote:

> On Sat, 27 Oct 2012, William Elliot wrote:
>
> > Here's an unsolved problem from Ask An Algebraist.
> >
> > > Let a and b be two positive integers such that ab+1 divides a^2 + b^2.
> >
> > > Show that a^2 + b^2 divided by ab + 1 is a perfect square.
> >
> > Two examples of a and b with p = ab + 1 | a^2 + b^2
> > are (1,1) and (2,8), for which (a^2 + b^2)/p = 1 and 4.
>
> Infinitely many examples.  Let a be any positive integer and b = a^3.
> Then p = a^4 + 1 divides a^2 + b^2 = a^2 + a^6 = a^2 (a^4 + 1).
>
> Are there other examples for a and b for which p | a^2 + b^2 ?

Here are some (a, b, p)

30       8          241
112      30         3361
240      27         6481
418     112        46817
1020      64        65281
1560     418       652081
2133     240       511921
3120     125       390001
5822    1560      9082321
7770     216      1678321
16256    1020     16581121
16800     343      5762401
18957    2133     40435282
21728    5822    126500417
32760     512     16773121
59040     729     43040161
77875    3120    242970001
81090   21728   1761923521

But the quotiont is a perfect square also in all these examples.
I have some ideas how one could try to prove it but none of them makes for
a complete proof.

--
Helmut Richter