*[Enwl-Inf] Fwd: Мы ходячие экосистемы (как микробиом регулирует климат)

3 views
Skip to first unread message

ecology

unread,
Jul 17, 2025, 10:41:46 AM7/17/25
to "ENWL-uni"
 
Спасибо, Булат!

С уважением,
Николай Андреевич Соболев,
ст. н. сотр. лаб. биогеографии,
Институт географии Российской академии наук

Четверг, 17 июля 2025, 8:04 +03:00 от Bulat Yessekin <
bulat.y...@gmail.com>:

Эта работа - в развитие Теории биотической регуляции и биотического насоса-
Удивительный мир живой планеты- растений, озер, почвы, описанный ранее
поэтом Даниилом Андреевым в Розе Мира!

Здесь полный текст на рус. и англ
https://docs.google.com/document/d/1VCpMZy6S-21uuie9ut8zyzPb0dzNxyBpo2RHQyAJQAI/edit?usp=sharing
https://climatewaterproject.substack.com/p/is-the-earth-microbiome-regulating?img=https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F35d4e3be-a586-41f4-94f0-3a6175073d87_673x448.png&open=false

Best regards,
Bulat K. YESSEKIN

чт, 17 июл. 2025г. в 09:41, Николай Андреевич Соболев <
sobolev...@mail.ru
<//e.mail.ru/compose/?mailto=mailto%3asobole...@mail.ru>>:

Всем привет!
Очень интересно!
Булат, киньте, пожалуйста, ссылку на оригинал этого обзора!
С уважением, Николай Соболев

--
Отправлено из Mail <
https://mail.ru/> для Android
четверг, 17 июля 2025г., 07:12 +03:00 от Bulat Yessekin
bulat.y...@gmail.com
<//e.mail.ru/compose/?mailto=mailto%3abulat....@gmail.com>:


Полный текст  ниже

...

Регулирование транспирации не менее увлекательно. Некоторые почвенные
бактерии производят метаболиты, которые влияют на поведение устьиц растений
— крошечных пор на листьях, которые контролируют потерю воды. Когда
влажность почвы низкая, некоторые микробы выделяют соединения, которые
сигнализируют растению о необходимости более плотно закрыть устьица,
сохраняя воду. Когда условия оптимальны, они могут стимулировать более
интенсивную транспирацию для улучшения поглощения питательных веществ.

Например, исследования Сесилии М. Джозеф и Дональда А. Филлипса из
Калифорнийского университета в Дэвисе [1] показали, что определенные
микробные метаболиты могут напрямую стимулировать транспирацию растений,
влияя на электрические градиенты через клеточные мембраны.

Существует также обратная связь. Растения выделяют различные корневые
экссудаты в зависимости от уровня стресса, и эти химические сигналы
привлекают различные микробные сообщества. Если растение испытывает водный
стресс, оно привлекает засухоустойчивые микробы. Если оно подвергается
атаке патогенов, оно привлекает микробы с антимикробными свойствами. По
сути, растение просит о помощи, и микробиом почвы реагирует, изменяя себя,
чтобы предоставить именно то, что необходимо.

Исследования Марики Труу [3], показывающие, что влажность воздуха изменяет
состав микробиома почвы, предполагают, что существует даже обратная связь
между атмосферными условиями и подземными микробиологическими сообществами.
Микробиом почвы реагирует на атмосферные сигналы и потенциально влияет на
реакцию растений на климатические условия.

Здесь может стать интересно поговорить о роли микробов в климате. Возможно,
почвенные микробы могут чувствовать, что в воздухе временно стало больше
влаги, и поэтому заставляют растения выделять больше транспирации, чтобы
поднять влажность воздуха выше насыщения, чтобы пошел дождь.

Микробиом озера

Чин Ву, ученый-комплексолог: Такая регуляция микробиома происходит и в
озерах?

[фитопланктон — фотосинтезирующий микроорганизм в водоемах]

Мэри, микробиолог: Безусловно. Микробиомы озер — замечательные регуляторы
окружающей среды, которые активно поддерживают качество воды с помощью
множества сложных механизмов. Когда в озеро попадает токсин, реакция на это
невероятно скоординирована.

Во-первых, микроорганизмы, способные метаболизировать токсин, начинают
активно размножаться — у них появляется новый источник пищи. Но это не
просто случайный рост. Эти микробы выделяют химические сигналы, называемые
аутоиндукторами, которые взаимодействуют с другими видами микробов, по сути
передавая сообщение «у нас произошло загрязнение, и вот как на него
реагировать».

Реакция включает в себя специализированное разделение труда. Некоторые
бактерии сосредотачиваются на расщеплении токсина на более мелкие, менее
вредные соединения. Другие производят ферменты, которые нейтрализуют
продукты расщепления. Третьи начинают формировать биопленки — липкие,
структурированные сообщества, которые работают как живые водоочистные
сооружения. Эти биопленки не просто случайно прилипают к поверхностям; они
стратегически располагаются в областях с оптимальными схемами потока, чтобы
максимизировать свою фильтрующую способность.

Биопленка создает микросреды с разными уровнями кислорода, условиями pH и
химическими градиентами. Различные виды микроорганизмов занимают разные
слои, каждый из которых специализируется на определенных процессах
детоксикации. Внешний слой может специализироваться на улавливании тяжелых
металлов, а более глубокие слои сосредоточены на разложении органических
загрязнителей.

Вот ключевой аспект регулирования: микробиом не просто реагирует на
загрязнение, он активно поддерживает базовое качество воды. Полезные
бактерии непрерывно производят соединения, которые предотвращают рост
вредных водорослей и патогенов. Они регулируют круговорот питательных
веществ, предотвращая накопление избыточного азота и фосфора, которые могут
вызвать вредное цветение водорослей.

Благодаря кворумному восприятию, когда популяции микроорганизмов достигают
определенной плотности, они координируют свое поведение. Если уровень
кислорода падает, они могут сигнализировать друг другу о переходе к
процессам, не требующим кислорода. Если pH становится слишком кислым, они
могут коллективно производить щелочные соединения для буферизации воды. По
сути, они осуществляют регулирование химического состава воды в режиме
реального времени.

Самая замечательная часть — это память системы. Как только микробиом озера
справился с определенным типом загрязнения, он поддерживает популяции
специализированных микробов, готовых реагировать, если это загрязнение
повторится. Это похоже на иммунную систему окружающей среды с адаптивной
памятью.

[См. мою предыдущую статью «Возрождение наших озер и океанов: как бороться
с цветением водорослей и загрязнением воды», о том, как Джон Тодд придумал,
как взрастить микробиом озера, чтобы очистить его от цветения водорослей и
действительно токсичных озер. Он называет микробиом биологическим
интеллектом природы].

Best regards,
Bulat K. YESSEKIN

---------- Forwarded message ---------
От: *Alpha Lo from Climate Water Project* <
climatewa...@substack.com
<https://e.mail.ru/compose/?mailto=mailto%3aclimatew...@substack.com>
>
Date: чт, 17 июл. 2025г. в 08:35
Subject: Is the earth microbiome regulating our climate?
To: <
bulat.y...@gmail.com
<https://e.mail.ru/compose/?mailto=mailto%3abulat....@gmail.com>>

Gaia 2.0
<
https://substack.com/redirect/2/eyJlIjoiaHR0cHM6Ly9jbGltYXRld2F0ZXJwcm9qZWN0LnN1YnN0YWNrLmNvbS9zdWJzY3JpYmU_dXRtX3NvdXJjZT1lbWFpbCZ1dG1fY2FtcGFpZ249ZW1haWwtc3Vic2NyaWJlJnI9NGJrdW51Jm5leHQ9aHR0cHMlM0ElMkYlMkZjbGltYXRld2F0ZXJwcm9qZWN0LnN1YnN0YWNrLmNvbSUyRnAlMkZpcy10aGUtZWFydGgtbWljcm9iaW9tZS1yZWd1bGF0aW5nIiwicCI6MTY2MjEyMjc0LCJzIjo1MzI4NjMsImYiOnRydWUsInUiOjI2MTMxMzMzOCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjIwNjgyOTkzMTAsImlzcyI6InB1Yi0wIiwic3ViIjoibGluay1yZWRpcmVjdCJ9.YgeEYf-qXOOeZkuTzvyCUffn99fxq-yRq_N0xoGEOcQ?>
for more
Is the earth microbiome regulating our climate?
<
https://substack.com/app-link/post?publication_id=532863&post_id=166212274&utm_source=post-email-title&utm_campaign=email-post-title&isFreemail=true&r=4bkunu&token=eyJ1c2VyX2lkIjoyNjEzMTMzMzgsInBvc3RfaWQiOjE2NjIxMjI3NCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjE3NTUzMTUzMTAsImlzcyI6InB1Yi01MzI4NjMiLCJzdWIiOiJwb3N0LXJlYWN0aW9uIn0.-QVMidvlUl7kDaCTyaUPK9kCmkeyZP_JCal91EFNdzI>Gaia
2.0

Alpha Lo <
https://substack.com/@climatewaterproject>
Jul 17
<
https://substack.com/@climatewaterproject>

<
https://substack.com/app-link/post?publication_id=532863&post_id=166212274&utm_source=substack&isFreemail=true&submitLike=true&token=eyJ1c2VyX2lkIjoyNjEzMTMzMzgsInBvc3RfaWQiOjE2NjIxMjI3NCwicmVhY3Rpb24iOiLinaQiLCJpYXQiOjE3NTI3MjMzMTAsImV4cCI6MTc1NTMxNTMxMCwiaXNzIjoicHViLTUzMjg2MyIsInN1YiI6InJlYWN0aW9uIn0.GK-7A9P1gnISYlKUOqFLEUkWoeAap2x4eh4l895Vm6Y&utm_medium=email&utm_campaign=email-reaction&r=4bkunu>

<
https://substack.com/app-link/post?publication_id=532863&post_id=166212274&utm_source=substack&utm_medium=email&isFreemail=true&comments=true&token=eyJ1c2VyX2lkIjoyNjEzMTMzMzgsInBvc3RfaWQiOjE2NjIxMjI3NCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjE3NTUzMTUzMTAsImlzcyI6InB1Yi01MzI4NjMiLCJzdWIiOiJwb3N0LXJlYWN0aW9uIn0.-QVMidvlUl7kDaCTyaUPK9kCmkeyZP_JCal91EFNdzI&r=4bkunu&utm_campaign=email-half-magic-comments&action=post-comment&utm_source=substack&utm_medium=email>

<
https://substack.com/app-link/post?publication_id=532863&post_id=166212274&utm_source=substack&utm_medium=email&utm_content=share&utm_campaign=email-share&action=share&triggerShare=true&isFreemail=true&r=4bkunu&token=eyJ1c2VyX2lkIjoyNjEzMTMzMzgsInBvc3RfaWQiOjE2NjIxMjI3NCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjE3NTUzMTUzMTAsImlzcyI6InB1Yi01MzI4NjMiLCJzdWIiOiJwb3N0LXJlYWN0aW9uIn0.-QVMidvlUl7kDaCTyaUPK9kCmkeyZP_JCal91EFNdzI>

<
https://substack.com/redirect/2/eyJlIjoiaHR0cHM6Ly9vcGVuLnN1YnN0YWNrLmNvbS9wdWIvY2xpbWF0ZXdhdGVycHJvamVjdC9wL2lzLXRoZS1lYXJ0aC1taWNyb2Jpb21lLXJlZ3VsYXRpbmc_dXRtX3NvdXJjZT1zdWJzdGFjayZ1dG1fbWVkaXVtPWVtYWlsJnV0bV9jYW1wYWlnbj1lbWFpbC1yZXN0YWNrLWNvbW1lbnQmYWN0aW9uPXJlc3RhY2stY29tbWVudCZyPTRia3VudSZ0b2tlbj1leUoxYzJWeVgybGtJam95TmpFek1UTXpNemdzSW5CdmMzUmZhV1FpT2pFMk5qSXhNakkzTkN3aWFXRjBJam94TnpVeU56SXpNekV3TENKbGVIQWlPakUzTlRVek1UVXpNVEFzSW1semN5STZJbkIxWWkwMU16STROak1pTENKemRXSWlPaUp3YjNOMExYSmxZV04wYVc5dUluMC4tUVZNaWR2bFVsN2tEYUNUeWFVUEs5a0Nta2V5WlBfSkNhbDkxRUZOZHpJIiwicCI6MTY2MjEyMjc0LCJzIjo1MzI4NjMsImYiOnRydWUsInUiOjI2MTMxMzMzOCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjIwNjgyOTkzMTAsImlzcyI6InB1Yi0wIiwic3ViIjoibGluay1yZWRpcmVjdCJ9.bikYM9AdFWqwFMzGBEHxHFl2AZg6K-1N7LkgMEhVF6w?&utm_source=substack&utm_medium=email>


READ IN APP
<
https://open.substack.com/pub/climatewaterproject/p/is-the-earth-microbiome-regulating?utm_source=email&redirect=app-store&utm_campaign=email-read-in-app>


<
https://substack.com/redirect/a11712ab-b077-40cd-a4b4-f64a70bb82ae?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>


Here my prediction - we will find in the upcoming decade that the earth
microbiome, that vibrant community of tiny organisms, bacteria, fungi,
viruses, diatoms, and phytoplankton in our bodies and in our ecosystems,
will be key to understanding how the earth regulates its temperature and
water circulatory system.

A helpful analogy to think about in this regards, is that the earth’s
microbiome is the assembly language layer of earths operating system. In
computers, the base level language is the assembly language. Other
languages, like C and Java are written on top of it. If we mess up this
assembly language, then we make the operating system built on top of it
less functional. This operating system is the Earth’s ecosystems, climate,
water cycles, and biogeochemical cycles.

Here’s a dialog between an ecologist, a microbiologist, a security guard, a
Gaia researcher, and a complexity scientist to explore this paradigm of the
“Earth microbiome regulating the climate”. Towards the end, you will find
two conjectures I pose as part of this paradigm : The *Microbiome Pump
Initiator* hypotheis which might explains how the microbiome could regulate
the biotic pump, and how it could possibly evolutionary evolve. Also there
is the *Microbial Teleconnection Regulator *hypothesis which explains how
microbes could coordinate large scale atmospheric circulation and weather.

….

*Sam the security guard:* Microbes are so small. How could they possibly
have any impact on climate?

*Ching Wu the complexity theorist:* Well, carbon dioxide molecules are tiny
too, but they have a massive impact on global warming. Scale doesn't always
determine influence.

*Sam the security guard: *Hmm, you are right. Carbon dioxide molecules
absorb radiation and so it affects temperature. But how would microbes
affect climate?

*Emerson the ecologist:* There are a variety of ways. Microbes gave us the
oxygen we breathe in the first place. Cyanobacteria transformed Earth's
atmosphere billions of years ago. Today, marine microbes like phytoplankton
still produce over half of our oxygen.

Microbes influence Earth’s biogeochemical cycles - the natural pathways
that move key elements like carbon, nitrogen, phosphorus, and sulfur
through the air, water, soil, and living organisms. These cycles impact the
planet’s climate. Microbes fix nitrogen from the atmosphere so plants can
grow, and plants in turn draw down carbon dioxide. In the soil, microbial
communities break down organic matter, releasing CO₂ but also helping lock
carbon away for centuries. In the oceans, microbial plankton absorb carbon
from the atmosphere and send it into the deep sea when they die. These
microscopic processes shape the global carbon budget, influence how much
heat the Earth traps, and ultimately help determine whether the planet
warms or cools.

And we are finding out more and more that microbes - certain bacteria and
fungi spores, are playing a large role in seeding cloud formation, which
means they are influencing the earth’s temperature (via clouds reflecting
of sunlight) and rain.

*Giovanni the Gaia researcher:* Wouldn’t it then follow that microbes could
be regulating the climate?

*Emerson the ecologist:* Not necessarily. They're influencing climate, yes,
but that doesn't mean they're regulating it in a coordinated way. There's a
big difference between impact and regulation. Regulation implies systemic
feedback or control, and from an evolutionary standpoint, it's not obvious
how earth’s microbiome could evolve to regulate something as vast as global
climate.

*Ching Wu the complexity scientist:* Maybe we can get insight into whether
the earth microbiome is regulating the climate or not, by first looking at
other microbiomes that do regulate things, like the human gut, the soil
microbiome, and the lake microbiome. Because in that context, regulation
clearly emerges.

*The Gut Microbiome*

*Mary the microbiologist:* That's true. The gut microbiome regulates the
immune system through several sophisticated mechanisms. First, there's what
we call "immune education." Beneficial bacteria train developing immune
cells, especially T-cells, to recognize what's normal versus what's
dangerous. They do this by presenting molecular patterns that immune cells
learn to associate with "friend" rather than "foe."

Second, they produce specific metabolites, like short-chain fatty acids,
that directly influence immune cell behavior. These molecules can promote
the development of regulatory T-cells, which act like immune system
peacekeepers, preventing overreaction to harmless substances.

*Sam the security guard:* That sounds like it might be regulation. How does
that actually work?

*Mary the microbiologist:* Exactly, it is regulation. The gut microbiome
doesn't just influence the immune system; it actively maintains immune
homeostasis through multiple feedback mechanisms.

When pathogenic bacteria try to invade, beneficial microbes detect
molecular danger signals and respond by releasing antimicrobial compounds
while simultaneously sending chemical messages to immune cells to mount an
appropriate defense. But here's the key regulatory aspect: when the immune
response becomes excessive, certain gut microbes sense the inflammatory
environment and counter-regulate by releasing anti-inflammatory molecules.

This creates a dynamic equilibrium. The microbiome continuously monitors
immune activity and adjusts its molecular output accordingly. If
inflammation is too low, some microbes can stimulate immune vigilance. If
it's too high, others dampen the response. It's like a biological
thermostat.

What makes this true regulation is the feedback loops: the microbiome
responds to immune system states, which in turn respond to microbial
signals, creating a self-correcting system that maintains optimal immune
function.

*Sam the security guard:* But how could this evolve? How could something
that's not in a species' genes, i.e the microbes, collaborate so intimately
with the species?

*Mary the microbiologist:* That's the fascinating part, it's co-evolution.
The host and microbiome evolved together over millions of years. Our immune
system didn't evolve in isolation; it evolved in constant interaction with
microbial communities. The microbes that were most beneficial to host
survival were selected for, and hosts that could best integrate with
helpful microbes had survival advantages.

Our genes code for immune receptors that specifically recognize and respond
to microbial molecules. We have genetic pathways dedicated to processing
microbial metabolites. Our intestinal structure evolved to provide optimal
niches for beneficial bacteria. Meanwhile, the microbes evolved molecular
mechanisms to communicate with our immune cells and metabolic systems.

It's like two dance partners who've been practicing together for eons,
they've learned each other's moves so well that they appear to be one
coordinated system. The collaboration is so ancient and fundamental that
our biology is essentially incomplete without it. We're not really
individual organisms; we're walking ecosystems.

*The Soil Microbiome*

*Ching Wu the complexity scientist:* And this kind of regulation happens in
soil too, right?

*Mary:* Exactly. Soil microbes create even more complex regulatory networks
with plants. They regulate plant immune systems through sophisticated
molecular dialogues. When a plant root encounters beneficial mycorrhizal
fungi, the fungi release signaling molecules that essentially tell the
plant's immune system "we're allies, not invaders." The plant responds by
allowing the fungi to form intimate connections with its root cells,
creating a symbiotic network.

But here's where it gets really interesting, these same microbes can flip
the switch when pathogens appear. Beneficial bacteria like Pseudomonas and
Bacillus species can detect pathogenic fungi or bacteria in the soil and
then release compounds that prime the plant's immune system, essentially
putting it on high alert. They're like an early warning system.

<
https://substack.com/redirect/fa32d0dd-6f53-4856-933c-d5f41e3345be?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>


[Fungi]

The transpiration regulation is equally fascinating. Certain soil bacteria
produce metabolites that influence the plant's stomatal behavior, the tiny
pores on leaves that control water loss. When soil moisture is low, some
microbes release compounds that signal the plant to close its stomata more
tightly, conserving water. When conditions are optimal, they can stimulate
more transpiration to enhance nutrient uptake.

For example, research by Cecilia M. Joseph and Donald A. Phillips at UC
Davis [1
<
https://substack.com/redirect/701dfa93-6548-4e01-99a5-a27e52fb9eac?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>]
showed that specific microbial metabolites can directly stimulate plant
transpiration by affecting the electrical gradients across cell membranes.

There's also feedback in the other direction. Plants release different root
exudates depending on their stress levels, and these chemical signals
recruit different microbial communities. If a plant is water-stressed, it
attracts drought-resistant microbes. If it's under pathogen attack, it
recruits microbes with antimicrobial properties. The plant is essentially
calling for help, and the soil microbiome responds by reshaping itself to
provide exactly what's needed.

Marika Truu's research [3
<
https://substack.com/redirect/4d001b6d-d204-43d7-86ff-cfa5194005ef?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>],
showing that air humidity changes soil microbiome composition suggests
there's even feedback between atmospheric conditions and underground
microbial communities. The soil microbiome is responding to atmospheric
signals and potentially influencing plant responses to climate conditions.

Here’s where it could get interesting about the role of microbes with
climate. Maybe the soil microbes could sense there is temporarily more
moisture in the air, and so cause plants to release more transpiration in
order to push the air over saturation humidity so that rain will fall.

*The Lake Microbiome*

*Ching Wu the complexity scientist:* Does this kind of microbiome
regulation happen in lakes too?

<
https://substack.com/redirect/62f5b939-cee9-4d1f-b05a-58e45ae09dfe?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>


*[*phytoplankton - a photosynthesizing microbe in water bodies*]*

*Mary the microbiologist:* Absolutely. Lake microbiomes are remarkable
environmental regulators that actively maintain water quality through
multiple sophisticated mechanisms. When a toxin enters a lake, the response
is incredibly orchestrated.

First, microbes that can metabolize the toxin begin to thrive—they have a
new food source. But it's not just random growth. These microbes release
chemical signals called autoinducers that communicate with other microbial
species, essentially broadcasting "we have a contamination event, and
here's how to respond."

The response involves specialized division of labor. Some bacteria focus on
breaking down the toxin into smaller, less harmful compounds. Others
produce enzymes that neutralize the breakdown products. Still others begin
forming biofilms, sticky, structured communities that work like living
water treatment plants. These biofilms don't just randomly stick to
surfaces; they strategically position themselves in areas with optimal flow
patterns to maximize their filtering capacity.

The biofilm creates microenvironments with different oxygen levels, pH
conditions, and chemical gradients. Different microbial species occupy
different layers, each specialized for specific detoxification processes.
The outer layer might specialize in capturing heavy metals, while deeper
layers focus on breaking down organic pollutants.

Here's the key regulatory aspect: the microbiome doesn't just react to
pollution, it actively maintains baseline water quality. Beneficial
bacteria continuously produce compounds that prevent the growth of harmful
algae and pathogens. They regulate nutrient cycling, preventing the buildup
of excess nitrogen and phosphorus that could trigger harmful algal blooms.

Through quorum sensing, when microbial populations reach certain densities,
they coordinate their behavior. If oxygen levels drop, they can signal each
other to shift to processes that don't require oxygen. If pH becomes too
acidic, they can collectively produce alkaline compounds to buffer the
water. They're essentially performing real-time water chemistry regulation.

The most remarkable part is the system's memory. Once a lake microbiome has
dealt with a particular type of contamination, it maintains populations of
specialized microbes ready to respond if that contamination reoccurs. It's
like an environmental immune system with adaptive memory.

[ see my previous article “Bringing our lakes and oceans back to life: how
to deal with algae blooms and polluted waters
<
https://substack.com/redirect/c35b242d-8590-49ca-b87b-ccf67aba782a?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>”,
about how John Todd figured out how to nurture this lake microbiome to
clean up algae blooms and really toxic lakes. He calls the microbiome
nature’s biological intelligence.]

*Ching Wu*: Don’t lakes and wetlands impact how aquifers recharge?

*Mary: *Yes, and here microbes play a surprising role. There can be sludge
and sediment that accumulates at the bottom of lakes and wetlands, rivers
too. The microbes can digest this sediment, and impact how much of that
water goes into aquifers. And we know that aquifer can then impact the
water cycle in profound ways, as it affects how much landscapes get
hydrated into dry season via springs, and how much trees can bring up water
to create rain in the dry season. So by impacting aquifer recharge,
microbes are having a significant impact on the water cycle.
Upgrade to paid
<
https://substack.com/redirect/2/eyJlIjoiaHR0cHM6Ly9jbGltYXRld2F0ZXJwcm9qZWN0LnN1YnN0YWNrLmNvbS9zdWJzY3JpYmU_dXRtX3NvdXJjZT1wb3N0JnV0bV9jYW1wYWlnbj1lbWFpbC1jaGVja291dCZuZXh0PWh0dHBzJTNBJTJGJTJGY2xpbWF0ZXdhdGVycHJvamVjdC5zdWJzdGFjay5jb20lMkZwJTJGaXMtdGhlLWVhcnRoLW1pY3JvYmlvbWUtcmVndWxhdGluZyZyPTRia3VudSZ0b2tlbj1leUoxYzJWeVgybGtJam95TmpFek1UTXpNemdzSW1saGRDSTZNVGMxTWpjeU16TXhNQ3dpWlhod0lqb3hOelUxTXpFMU16RXdMQ0pwYzNNaU9pSndkV0l0TlRNeU9EWXpJaXdpYzNWaUlqb2lZMmhsWTJ0dmRYUWlmUS4zMXlkWTVvNF9lTklpNmlsdkRUNUdETW84dHdNUnhva19QWjl3a1N0NG1rIiwicCI6MTY2MjEyMjc0LCJzIjo1MzI4NjMsImYiOnRydWUsInUiOjI2MTMxMzMzOCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjIwNjgyOTkzMTAsImlzcyI6InB1Yi0wIiwic3ViIjoibGluay1yZWRpcmVjdCJ9.Hdi4V3QIrOrPXdBzFSSxSzwCg8HYTSdx0v2tHtdfj7o?&utm_medium=email&utm_source=subscribe-widget&utm_content=166212274>

*Emerson the ecologist:* So when you put it all together, gut, soil, lake,
what we see is that microbial communities can regulate complex systems.
They're integral components of the system's feedback loops.

There is also a deeper concept here : that of the holobiont. This is the
idea that what we traditionally call an "organism" is actually a
collective, a host plus all its associated microbes functioning as a single
biological unit.

A human isn't just human cells. We're human cells plus trillions of
bacterial, fungal, and viral cells that are essential to our survival. The
same is true for plants, a tree isn't just plant tissue, it's plant tissue
plus mycorrhizal fungi, plus soil bacteria, plus countless other
microorganisms that are integral to its function. Even a lake isn't just
water, it's water plus its entire microbial ecosystem working together to
maintain stability.

The holobiont concept suggests that the boundaries between "self" and
"other" are much more fluid than we thought. The regulation we're seeing
isn't separate organisms cooperating, it's components of a larger
biological system maintaining homeostasis. The gut microbiome regulating
immunity, soil microbes managing plant water use, lake microbes maintaining
water quality, these aren't examples of cooperation between different
entities. They're examples of integrated biological systems regulating
themselves.

This could change how we think about evolution. Selection isn't just acting
on individual organisms; it's acting on entire holobionts. The most
successful combinations of hosts and microbes persist and reproduce
together.

*Giovanni the Gaia researcher:* And if they can regulate a gut, or a lake,
or a forest, why not a planet? Maybe Earth itself is a holobiont, with the
planet as the host and the global microbiome as the regulating partner.
That’s what Gaia theory is about. The Earth's microbiome could then
regulate the climate in the same way gut microbes regulate immunity or soil
microbes regulate plant health.

*Emerson the ecologist:* But wait up, there's natural selection driving
evolution, but how could these microbes evolve to influence climate? I can
see how the gut microbiome and immune system could evolve together over
millions of years. They're in constant, intimate contact. The microbes that
helped their host survive got passed on, and hosts that could best work
with beneficial microbes thrived. It's proximity-driven co-evolution.

But when you're talking about climate regulation, you're talking about
microbes on land somehow evolving to influence atmospheric conditions that
are physically distant from them. A soil bacterium in the Amazon is
separated from the global atmosphere by vast spatial scales. How could
there be the kind of direct feedback necessary for co-evolution? The gut
microbiome gets immediate feedback from the immune system it's regulating,
if it helps the host, it survives. But how would a microbe "know" it's
helping stabilize global climate, and how would it be selected for that
function when the climate system is so far removed from its immediate
environment?

*Ching Wu the complexity scientist:* But evolution isn't just natural
selection, it's also dynamical systems evolution. Think about Daisyworld,
James Lovelock's famous model he made to back up his Gaia hypothesis. In
Daisyworld, you have a planet with black daisies that absorb heat and white
daisies that reflect it. As the sun gets brighter, black daisies heat up
their environment, creating conditions that favor white daisies. The white
daisies then cool things down, eventually creating conditions that favor
black daisies again. Neither daisy is trying to regulate planetary
temperature, but the system naturally evolves toward temperature stability
through these feedback loops.

The key here is iteration and dynamical systems theory. Systems don't just
evolve through direct selection, they evolve toward attractors in the
energy landscape. They can be many perturbations over many iterations it
finds the attractors. Think of *perturbations* like wind or fire for
dynamical systems, as similar to the *mutations* of genes in natural
selection. Perturbations and mutations are a way of searching phase space
for more optimal and efficient solutions.

Heres the key point : microbes can go up and seed clouds every day. They
literally become cloud condensation nuclei, which changes temperature and
rainfall patterns. This creates a feedback loop because that temperature
and rainfall directly affects the soil microbiome and their impact on
plants. Which in turn affects transpiration, which affects atmospheric
moisture, which affects cloud formation, which affects the microbes that
seed those clouds.

It's a feedback loop that can adjust itself through iteration. The system
doesn't need conscious intent, it just needs repeated cycles where
atmospheric conditions influence microbial communities, which influence
plant behavior, which influences atmospheric conditions. Over hundreds of
thousands of iterations, this system could evolve toward climate stability
through dynamical systems evolution toward the most stable attractor state,
which then combines with natural selection to amplify those genes which
guide towards these attractor states.

<
https://substack.com/redirect/289a39d3-8fdf-4595-a640-80311aa33242?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>


*Giovanni:* There's an interesting phenomenon trees can influence climate
via the water cycle. I wonder if it might suggest an idea for microbes
influencing climate. The Amazon rainforest actually calls in the rain by
changing large-scale circulation, shifting the rainy season earlier by
about two months. Makarieva and Gorshkov have proposed a biotic pump theory
where transpiration from the forest condenses to create a partial vacuum
that draws in ocean winds. The atmospheric scientist Rong Fu has proposed a
similar theory, with a latent heat mechanism instead of the vacuum effect.

*Emerson:* That biotic pump phenomena is hard to understand from an
evolutionary viewpoint. Why would trees of so many different origins all
coordinate their transpiration two months earlier? This would actually
reduce their individual fitness unless there was a critical mass of trees
doing it simultaneously. But the critical mass required is so high that it
seems evolutionarily unlikely, how could enough trees of different species
coordinate without communication?

*Mary:* I think I might have an idea for how. It could be to do with the
forest microbiome. Forests are connected by vast mycelial networks, fungal
threads that link root systems across entire forests. These networks don't
just transport nutrients; they carry chemical signals that can coordinate
forest-wide responses. They work with the bacteria and other parts of the
forest microbiome.

The forest microbiome could be the coordinator. When environmental
conditions signal that earlier transpiration would be beneficial, the
mycelial network could simultaneously signal trees across vast areas to
begin their transpiration response. It's like a forest-wide nervous system,
with the microbiome as the information processor.

At the same time the microbiome is coordinating transpiration, it could
also be releasing more microbes and fungal spores into the atmosphere to
seed the condensation of that transpiration. The forest microbiome isn't
just coordinating the pump, it's also providing the condensation nuclei
that make the pump work more efficiently.

*Emerson*: The wet season is normally started by this giant rainband across
the arth called the ITCZ, that moves north and south with the season. But
the wet season is strted earlier in the Amazon, when the forests divert
that ocean moisture. How would the microbes know when to time this.?

*Mary*: Well we know the soil microbiome can sense humidity, and it has
seasonal awareness, so it could learn over the course of millions of years
to evolve with the seasons.

*Sam:* So you're saying the forest microbiome is like the pump initiator?
It coordinates the trees to transpire together and then seeds the clouds to
make sure that transpiration actually creates rain? We could call it
the *Microbiome
Pump Initiator* hypothesis.

*Emerson:* I'm wondering, do we have an Earth microbiome, or more just a
lot of regional microbiomes that are not in large scale coordination?

*Ching Wu:* There are actually a lot of microbes in the wind. When they
land, they affect that regional microbiome. And these microbes blow across
oceans to other continents, so they could all be coordinated through this
exchange.

This reminds me of a simulation by Tim Lenton called Flask World. He had
many flasks, each with their own microbiome, connected by tubes. The
various flasks would coordinate with all the other flasks to reach a
homeostatic state. Each flask was unique, but there was also emergent
coordination across all flasks. Flask world should be a scale invariant
model, so you could imagine it working at a much larger continental scale. [
2
<
https://substack.com/redirect/fd010897-38ba-42cf-8163-63b5fcf36bee?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>
]

So a similar way, the microbiome could coordinate across continents. And
when it does this, because soil microbiomes can sense humidity and
temperature, it can then adjust its behavior. So it's possible that global
winds, temperature via clouds, and rainfall have some coordination via
millions of years of iteration.

*Sam:* So is the Earth microbiome intelligent to some degree? Does it have
learning, memory, and the ability to regulate?

*Ching Wu:* We see in the gut, soil, and lake that the microbiome has
emergent intelligence, it communicates and coordinates. If we argue the
same evolutionary iteration that lead to those abilities to emerge, could
also happen via the everyday microbe-weather interactions, and because
there is a continent to continent exchange, then concievably there could be
an earth microbiome intelligence.

In complex systems, if a system undergoes many iterations, it evolves over
time. There is this concept called a fitness landscape, where a hill is a
place of higher fitness. So as you wander around this landscape, you have
to go down into a valley, and then come to another hill. Over time, you can
find higher and higher hills. So over a million years, this coupled
microbe-climate system can evolve to higher hills, higher fitness levels,
where they are mich more coordinated.

*Mary:* Can I get an example of this?

*Giovanni: *Well we know the soil microbiome can sense temperature. If it
gets hotter, it could send signals to the plants to transpire more, to
transpire less, or not send signals. When enough plants transpire more,
they can create lower clouds, which reflect more sunlight and cool the
earth. Now imagine there are mutations or pertubations happening everyday
in the soil microbiome, of what signals it sends to the plants based on
temperature, or its memory of temperature over past season ( the microbiome
has a memory). These signals can then lead to more clouds, less clouds, or
no shift. If there is more clouds, and more rain, this can then be
beneficial to certain types of microbes in the soil, so those microbes get
selected for. Over millions of years of iteration, this combination of
dynamical systems evolution coupled with natural selection, could lead to
the soil microbiome being able to regulate the temperature for what is most
optimal for itself.

*Sam: *Trees naturally affect how much rain there is downwind by how much
they transpire. Would there be any evolutionary reason for trees to
regulate their transpiration to best benefit rainfall for ecosystems
downwind of it, maybe even 500 miles away.

*Ching Wu*: Well from a conventional evolutionary viewpoint, they doesn’t
seem to be an obvious reason at first glance, why trees in one place should
work to get water to ecosystems far away from it. However this microbiome
viewpoint gives me an idea.

Microbes are constantly getting blown downwind, and through that they can
send signals between ecosystems hundreds of miles apart. Lets call the
upwind location X, and the downwind location far away Y. X releases
microbes that travel to Y. The soil microbiome at Y can use that as a sign
of what is happening at X. Now wind reversals happen once in a while, even
if there is a more commonly prevailing wind. That soil microbiome at Y then
sends microbes in air, that reach X. Those microbes can impact what the
trees do at X. Now we can imagine random mutation of response to each of
these microbe signals.

Over millions of iterations, this system begins to find the hills in the
fitness landscape, the more energetically favorable states. And a more
energetically favorable state could be that when atmospheric humidity gets
to a certain point, the trees at X release some extra transpiration, so
that Y is more likely to get more rain.

*Sam*: Does this work across continents too?

*Ching Wu*: Yes. We know from climate researchers like Roni Avissar and
Abigail Swann in a field called teleconnections, that the change in forest
on one continent will affect climate on another continent via the forests
impacts on jets streams, Hadley cells, El-nino, and Rossby waves, which are
cross continental atmospheric phenomena. Now if microbes also blow from
continent to continent, over millions of years they could be a
cross-continental coordination to influence forest transpiration, which
would then influence jet streams, Hadley cells and their ilk. Which means
global atmospheric circulation patterns may be being regulated by microbes.

*Sam*: Wow this is wild. Maybe we can call this the *Microbial
Teleconnection Regulator *hypothesis.

*Ching Wu: *So the emergent picture is : these nano-size particles gather
in large communities inside organisms and different ecological niches,
coordinating with their hosts, symbiosising into new functioning wholes;
they travel in groups around the globe, and upon reaching new places they
pass messages on from where they’ve been, coordinating with their new
communities. They seed clouds, and impact global temperature and rainfall,
and in so doing provide resources for the communities of nano-size
particles below.

*Mary*: That’s a cool visual.

*Giovanni: *Isn’t pharmaceuticals and synthetic agriculture fertilizers
creating a lot of problems in our environment, and destroying environmental
microbiomes.

*Mary* : Yes indeed it is. As scientists figure out the large role microbes
have on our climate I think it will kick off a climate movement to get off
our dependence on pharmaceuticals and synthetic agriculture fertilizers.

*Ching Wu: *It’s time for a cutting edge *earth-climate microbiome*
research programme for microbiologists and climate scientists to coordinate
on.

*Sam*: This picture of the earth microbiome regulating the climate is
blowing my mind, its nothing like what I learnt in school.

….

This is a reader supported publication. Your support helps research and
independent journalism.
Upgrade to paid
<
https://substack.com/redirect/2/eyJlIjoiaHR0cHM6Ly9jbGltYXRld2F0ZXJwcm9qZWN0LnN1YnN0YWNrLmNvbS9zdWJzY3JpYmU_dXRtX3NvdXJjZT1wb3N0JnV0bV9jYW1wYWlnbj1lbWFpbC1jaGVja291dCZuZXh0PWh0dHBzJTNBJTJGJTJGY2xpbWF0ZXdhdGVycHJvamVjdC5zdWJzdGFjay5jb20lMkZwJTJGaXMtdGhlLWVhcnRoLW1pY3JvYmlvbWUtcmVndWxhdGluZyZyPTRia3VudSZ0b2tlbj1leUoxYzJWeVgybGtJam95TmpFek1UTXpNemdzSW1saGRDSTZNVGMxTWpjeU16TXhNQ3dpWlhod0lqb3hOelUxTXpFMU16RXdMQ0pwYzNNaU9pSndkV0l0TlRNeU9EWXpJaXdpYzNWaUlqb2lZMmhsWTJ0dmRYUWlmUS4zMXlkWTVvNF9lTklpNmlsdkRUNUdETW84dHdNUnhva19QWjl3a1N0NG1rIiwicCI6MTY2MjEyMjc0LCJzIjo1MzI4NjMsImYiOnRydWUsInUiOjI2MTMxMzMzOCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjIwNjgyOTkzMTAsImlzcyI6InB1Yi0wIiwic3ViIjoibGluay1yZWRpcmVjdCJ9.Hdi4V3QIrOrPXdBzFSSxSzwCg8HYTSdx0v2tHtdfj7o?&utm_medium=email&utm_source=subscribe-widget&utm_content=166212274>

Share
<
https://substack.com/app-link/post?publication_id=532863&post_id=166212274&utm_source=substack&utm_medium=email&utm_content=share&utm_campaign=email-share&action=share&triggerShare=true&isFreemail=true&r=4bkunu&token=eyJ1c2VyX2lkIjoyNjEzMTMzMzgsInBvc3RfaWQiOjE2NjIxMjI3NCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjE3NTUzMTUzMTAsImlzcyI6InB1Yi01MzI4NjMiLCJzdWIiOiJwb3N0LXJlYWN0aW9uIn0.-QVMidvlUl7kDaCTyaUPK9kCmkeyZP_JCal91EFNdzI>

References

[1] Joseph, C. M., & Phillips, D. A. (2003). Metabolites from soil bacteria
affect plant water relations
<
https://substack.com/redirect/701dfa93-6548-4e01-99a5-a27e52fb9eac?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>.
*Plant Physiology and Biochemistry, 41*(2), 189-192

[2] Williams, Hywel TP, and Timothy M. Lenton. "The Flask model: emergence
of nutrient‐recycling microbial ecosystems and their disruption by
environment‐altering ‘rebel’organisms.
<
https://substack.com/redirect/fd010897-38ba-42cf-8163-63b5fcf36bee?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>"
*Oikos* 116, no. 7 (2007): 1087-1105

[3] Truu, M, Tullus, T., Parts, T., & Sellin, A. (2017). Elevated Air
Humidity Changes Soil Bacterial Community Structure in the Silver Birch
Stand
<
https://substack.com/redirect/4d001b6d-d204-43d7-86ff-cfa5194005ef?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>.
*Frontiers in Microbiology, 8*, 557


You're currently a free subscriber to Climate Water Project
<
https://substack.com/redirect/f3ce0e6c-e0ec-41f6-a071-a1469c6f01ff?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>.
For the full experience, upgrade your subscription.
<
https://substack.com/redirect/2/eyJlIjoiaHR0cHM6Ly9jbGltYXRld2F0ZXJwcm9qZWN0LnN1YnN0YWNrLmNvbS9zdWJzY3JpYmU_dXRtX3NvdXJjZT1wb3N0JnV0bV9jYW1wYWlnbj1lbWFpbC1jaGVja291dCZuZXh0PWh0dHBzJTNBJTJGJTJGY2xpbWF0ZXdhdGVycHJvamVjdC5zdWJzdGFjay5jb20lMkZwJTJGaXMtdGhlLWVhcnRoLW1pY3JvYmlvbWUtcmVndWxhdGluZyZyPTRia3VudSZ0b2tlbj1leUoxYzJWeVgybGtJam95TmpFek1UTXpNemdzSW1saGRDSTZNVGMxTWpjeU16TXhNQ3dpWlhod0lqb3hOelUxTXpFMU16RXdMQ0pwYzNNaU9pSndkV0l0TlRNeU9EWXpJaXdpYzNWaUlqb2lZMmhsWTJ0dmRYUWlmUS4zMXlkWTVvNF9lTklpNmlsdkRUNUdETW84dHdNUnhva19QWjl3a1N0NG1rIiwicCI6MTY2MjEyMjc0LCJzIjo1MzI4NjMsImYiOnRydWUsInUiOjI2MTMxMzMzOCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjIwNjgyOTkzMTAsImlzcyI6InB1Yi0wIiwic3ViIjoibGluay1yZWRpcmVjdCJ9.Hdi4V3QIrOrPXdBzFSSxSzwCg8HYTSdx0v2tHtdfj7o?&utm_source=substack&utm_medium=email&utm_content=postcta>

Upgrade to paid
<
https://substack.com/redirect/2/eyJlIjoiaHR0cHM6Ly9jbGltYXRld2F0ZXJwcm9qZWN0LnN1YnN0YWNrLmNvbS9zdWJzY3JpYmU_dXRtX3NvdXJjZT1wb3N0JnV0bV9jYW1wYWlnbj1lbWFpbC1jaGVja291dCZuZXh0PWh0dHBzJTNBJTJGJTJGY2xpbWF0ZXdhdGVycHJvamVjdC5zdWJzdGFjay5jb20lMkZwJTJGaXMtdGhlLWVhcnRoLW1pY3JvYmlvbWUtcmVndWxhdGluZyZyPTRia3VudSZ0b2tlbj1leUoxYzJWeVgybGtJam95TmpFek1UTXpNemdzSW1saGRDSTZNVGMxTWpjeU16TXhNQ3dpWlhod0lqb3hOelUxTXpFMU16RXdMQ0pwYzNNaU9pSndkV0l0TlRNeU9EWXpJaXdpYzNWaUlqb2lZMmhsWTJ0dmRYUWlmUS4zMXlkWTVvNF9lTklpNmlsdkRUNUdETW84dHdNUnhva19QWjl3a1N0NG1rIiwicCI6MTY2MjEyMjc0LCJzIjo1MzI4NjMsImYiOnRydWUsInUiOjI2MTMxMzMzOCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjIwNjgyOTkzMTAsImlzcyI6InB1Yi0wIiwic3ViIjoibGluay1yZWRpcmVjdCJ9.Hdi4V3QIrOrPXdBzFSSxSzwCg8HYTSdx0v2tHtdfj7o?&utm_source=substack&utm_medium=email&utm_content=postcta>

Like
<
https://substack.com/app-link/post?publication_id=532863&post_id=166212274&utm_source=substack&isFreemail=true&submitLike=true&token=eyJ1c2VyX2lkIjoyNjEzMTMzMzgsInBvc3RfaWQiOjE2NjIxMjI3NCwicmVhY3Rpb24iOiLinaQiLCJpYXQiOjE3NTI3MjMzMTAsImV4cCI6MTc1NTMxNTMxMCwiaXNzIjoicHViLTUzMjg2MyIsInN1YiI6InJlYWN0aW9uIn0.GK-7A9P1gnISYlKUOqFLEUkWoeAap2x4eh4l895Vm6Y&utm_medium=email&utm_campaign=email-reaction&r=4bkunu>

Comment
<
https://substack.com/app-link/post?publication_id=532863&post_id=166212274&utm_source=substack&utm_medium=email&isFreemail=true&comments=true&token=eyJ1c2VyX2lkIjoyNjEzMTMzMzgsInBvc3RfaWQiOjE2NjIxMjI3NCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjE3NTUzMTUzMTAsImlzcyI6InB1Yi01MzI4NjMiLCJzdWIiOiJwb3N0LXJlYWN0aW9uIn0.-QVMidvlUl7kDaCTyaUPK9kCmkeyZP_JCal91EFNdzI&r=4bkunu&utm_campaign=email-half-magic-comments&action=post-comment&utm_source=substack&utm_medium=email>

Restack
<
https://substack.com/redirect/2/eyJlIjoiaHR0cHM6Ly9vcGVuLnN1YnN0YWNrLmNvbS9wdWIvY2xpbWF0ZXdhdGVycHJvamVjdC9wL2lzLXRoZS1lYXJ0aC1taWNyb2Jpb21lLXJlZ3VsYXRpbmc_dXRtX3NvdXJjZT1zdWJzdGFjayZ1dG1fbWVkaXVtPWVtYWlsJnV0bV9jYW1wYWlnbj1lbWFpbC1yZXN0YWNrLWNvbW1lbnQmYWN0aW9uPXJlc3RhY2stY29tbWVudCZyPTRia3VudSZ0b2tlbj1leUoxYzJWeVgybGtJam95TmpFek1UTXpNemdzSW5CdmMzUmZhV1FpT2pFMk5qSXhNakkzTkN3aWFXRjBJam94TnpVeU56SXpNekV3TENKbGVIQWlPakUzTlRVek1UVXpNVEFzSW1semN5STZJbkIxWWkwMU16STROak1pTENKemRXSWlPaUp3YjNOMExYSmxZV04wYVc5dUluMC4tUVZNaWR2bFVsN2tEYUNUeWFVUEs5a0Nta2V5WlBfSkNhbDkxRUZOZHpJIiwicCI6MTY2MjEyMjc0LCJzIjo1MzI4NjMsImYiOnRydWUsInUiOjI2MTMxMzMzOCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjIwNjgyOTkzMTAsImlzcyI6InB1Yi0wIiwic3ViIjoibGluay1yZWRpcmVjdCJ9.bikYM9AdFWqwFMzGBEHxHFl2AZg6K-1N7LkgMEhVF6w?&utm_source=substack&utm_medium=email>


© 2025 Alpha Lo
548 Market Street PMB 72296, San Francisco, CA 94104
Unsubscribe
<
https://substack.com/redirect/2/eyJlIjoiaHR0cHM6Ly9jbGltYXRld2F0ZXJwcm9qZWN0LnN1YnN0YWNrLmNvbS9hY3Rpb24vZGlzYWJsZV9lbWFpbD90b2tlbj1leUoxYzJWeVgybGtJam95TmpFek1UTXpNemdzSW5CdmMzUmZhV1FpT2pFMk5qSXhNakkzTkN3aWFXRjBJam94TnpVeU56SXpNekV3TENKbGVIQWlPakUzT0RReU5Ua3pNVEFzSW1semN5STZJbkIxWWkwMU16STROak1pTENKemRXSWlPaUprYVhOaFlteGxYMlZ0WVdsc0luMC5wd2pvSnRVMWwxb0ZMbGdDR1pBSnUxeUp3eTlaMjM4OHlQS1ZDZldGX0xVIiwicCI6MTY2MjEyMjc0LCJzIjo1MzI4NjMsImYiOnRydWUsInUiOjI2MTMxMzMzOCwiaWF0IjoxNzUyNzIzMzEwLCJleHAiOjIwNjgyOTkzMTAsImlzcyI6InB1Yi0wIiwic3ViIjoibGluay1yZWRpcmVjdCJ9.u-jH5eDVxT1qLVT_ZNebpa-cGn_sn6IutYSBFfkh6qM?>

[image: Get the app]
<
https://substack.com/redirect/f21e9339-4ac9-475c-b73d-8616ce0663b3?j=eyJ1IjoiNGJrdW51In0.KOZfO-6JEyvRhEuUjLb8gW_imryoGpxZHT_51sl73y8>[image:
Start writing]
<
https://substack.com/redirect/2/eyJlIjoiaHR0cHM6Ly9zdWJzdGFjay5jb20vc2lnbnVwP3V0bV9zb3VyY2U9c3Vic3RhY2smdXRtX21lZGl1bT1lbWFpbCZ1dG1fY29udGVudD1mb290ZXImdXRtX2NhbXBhaWduPWF1dG9maWxsZWQtZm9vdGVyJmZyZWVTaWdudXBFbWFpbD1idWxhdC55ZXNzZWtpbkBnbWFpbC5jb20mcj00Ymt1bnUiLCJwIjoxNjYyMTIyNzQsInMiOjUzMjg2MywiZiI6dHJ1ZSwidSI6MjYxMzEzMzM4LCJpYXQiOjE3NTI3MjMzMTAsImV4cCI6MjA2ODI5OTMxMCwiaXNzIjoicHViLTAiLCJzdWIiOiJsaW5rLXJlZGlyZWN0In0.9ah7hqvTsAkrqFu8NoVcauyE2l62dY41A8fwDRM4E6c?>



--
Чтобы посмотреть обсуждение, перейдите по ссылке
https://groups.google.com/d/msgid/seu-international/CAOEkFvVm5dKnmS9_%2BXXafKbj9KVLrafwqnkoeBN%3DeAPdkci8yA%40mail.gmail.com
<https://groups.google.com/d/msgid/seu-international/CAOEkFvVm5dKnmS9_%2BXXafKbj9KVLrafwqnkoeBN%3DeAPdkci8yA%40mail.gmail.com?utm_medium=email&utm_source=footer>
.
 
 
От: Николай Андреевич Соболев <sobolev...@mail.ru>
Date: чт, 17 июл. 2025 г. в 08:39
Subject: Re: Мы ходячие экосистемы (как микробиом регулирует климат)
 
 
PS. Именно эту фразу - "Мы ходячие экосистемы" - я слышал еще в начале 2000-х то ли от В.В.Хлебовича, то ли Я.И.Старобогатова. Судя по приводимой здесь ссылке - об этом была работа в 2007 г. Поэтому вряд ли данная идея как-то связана с более поздней теорией биотической регуляции В.Г.Горшкова, о чем пишет Булат. Однако, всё это интересно в плане развития подхода. Отмечу также что немало статей на тему, что мы ходячие экосистемы, публикуется и медицинских и физиологических журналах (и про то, что кушать надо с умом, и что антибиотики нарушают внутренний биом и т.п.).
 
Вл
 
 
 
------------- *  ENWL  * ------------
Ecological North West Line * St. Petersburg, Russia
Independent Environmental Net Service
Russian: ENWL (North West), ENWL-inf (FSU), ENWL-misc (any topics)
English: ENWL-eng (world information)
Send information to en...@enw.net.ru
Subscription,Moderator: en...@enw.net.ru
Archive: http://groups.google.com/group/enwl/
New digests see on https://ecodelo.org
 (C) Please refer to exclusive articles of ENWL
-------------------------------------
Reply all
Reply to author
Forward
0 new messages