Everything that I post to is directly related to the correctness of
the following C code: (executed in the x86utm OS written in C and C++)
void H_Hat(u32 P)
{
u32 Input_Halts = Halts(P, P);
if (Input_Halts)
HERE: goto HERE;
}
int main()
u32 Input_Would_Halt = Halts((u32)H_Hat, (u32)H_Hat);
Output("Input_Would_Halt = ", Input_Would_Halt);
}
When the behavior of the input Ĥ to simulating halt decider H
(a) correctly matches
(b) a correct non-halting behavior pattern
then H decides non-halting on Ĥ correctly.
Halts returns 0 on the basis that the behavior of H_Hat matches
the [infinitely_nested_simulation] not halting behavior pattern.
If the above C code is correct then this proves that all
the conventional halting problem instances can be decided
as not halting. The following is from Peter Linz:
Ĥ.q0 wM ⊢* Ĥ.qx wM wM ⊢* Ĥ.qy ∞
Ĥ.q0 wM ⊢* Ĥ.qx wM wM ⊢* Ĥ.qn
H.qx wM wM ⊢* H.qy
H.qx wM wM ⊢* H.qn
H applied to input (Ĥ, Ĥ) transitions to H.qn on the basis that
the behavior of Ĥ matches the [infinitely_nested_simulation]
not halting behavior pattern.
http://www.liarparadox.org/Peter_Linz_HP(Pages_315-320).pdf
http://www.liarparadox.org/Halting_problem_undecidability_and_infinitely_nested_simulation.pdf