The old Google Groups will be going away soon, but your browser is incompatible with the new version.
Genetic Algorithms
 There are currently too many topics in this group that display first. To make this topic appear first, remove this option from another topic. There was an error processing your request. Please try again. Standard view   View as tree
 2 messages

From:
To:
Cc:
Followup To:
Subject:
 Validation: For verification purposes please type the characters you see in the picture below or the numbers you hear by clicking the accessibility icon.

More options Jun 29 1989, 2:10 pm
Newsgroups: comp.ai
From: andro...@cb.ecn.purdue.edu (Ioannis Androulakis)
Date: 29 Jun 89 18:10:09 GMT
Local: Thurs, Jun 29 1989 2:10 pm
Subject: Genetic Algorithms

*********
The following article concerns Genetic Algorithms. I apologize
for bothering the list with that subject but I guess it is
the only list available for me.
*********
In Genetic Algorithms theory the probabilities of application
of the genetic operators are considered to be independent of
each other. What do you think of a GA where the probabilties
would give a sum of 1. Therefore, after a string has been selected
we apply to that string an operator selected randomly according
to the probability that has been atributed to it. In other words
each string has associated with it a set of operators and the
corresponding probabilities of application of these operators.

Any suggestion is welcomed.
Thank you,
yannis
andro...@helium.ecn.purdue.edu

To post a message you must first join this group.
You do not have the permission required to post.
More options Jun 29 1989, 4:58 pm
Newsgroups: comp.ai
From: pres...@bbn.com (Philip Resnik)
Date: 29 Jun 89 20:58:32 GMT
Local: Thurs, Jun 29 1989 4:58 pm
Subject: Re: Genetic Algorithms
In article <1...@cb.ecn.purdue.edu> andro...@cb.ecn.purdue.edu

(Ioannis Androulakis) writes:
> In Genetic Algorithms theory the probabilities of application
> of the genetic operators are considered to be independent of
> each other. What do you think of a GA where the probabilties
> would give a sum of 1. Therefore, after a string has been selected
> we apply to that string an operator selected randomly according
> to the probability that has been atributed to it. In other words
> each string has associated with it a set of operators and the
> corresponding probabilities of application of these operators.

It's pretty widely accepted that no single set of genetic algorithm
parameters (e.g. population size, mutation rate, crossover rate)
is optimal for all problems, and it sounds like you're trying
to work out an approach to that issue.  One common previous
approach has been to vary the mutation rate from a higher value
at the beginning of a run (thus initially emphasizing exploration of
the search space) linearly down to a lower value at the end of
the run (where presumably crossover will be more successful at
producing good solutions).

Another recent, related piece of work to look at is the "adaptive
operator probabilities" work of Lawrence Davis:  he takes a set
of genetic operators (e.g. mutation, single-point crossover,
two-point crossover, uniform crossover, hillclimbing operators)
and gives them each an initial probability at the beginning of
the run, and then modifies the operator's probability on the
basis of the performance of the children produced by this
operator (and their descendants).  He's had quite good results
with this approach, and it also provides an interesting way of
testing out new operators to see if they improve performance or
hurt it.  Note, however, that he maintains a single probability
for each operator across the entire population, as opposed to
having a different probability for each member.

Lawrence Davis, "Adapting Operator Probabilities in Genetic Algorithms,"
Proceedings of the 3rd International Conference on Genetic Algorithms,
Morgan Kaufman, 1989.

Philip Resnik
pres...@bbn.com